EE 503

Homework #2 Due: October 20, 2005

Pr.1: Show that

$$(\operatorname{sinc}(x-m), \operatorname{sinc}(x-n)) = \delta[m-n].$$

where (f,g) stands for the inner product calculation: $\int_{-\infty}^{\infty} f(x)g(x)dx$ and m,n are integers. (Hint: Apply Fourier transform to the arguments of the inner product).

Pr.2: The sequences \mathbf{x} and \mathbf{h} have the length N. The sequence \mathbf{y} is defined as the circular convolution of \mathbf{x} and \mathbf{h} . Write the circular convolution matrix mapping input vector \mathbf{x} to the circular convolution output \mathbf{y} .

Show that the vector $\mathbf{e_k}$ with entries $e_k(n) = e^{j\frac{2\pi}{N}nk}$, $0 \le n \le N-1$ is an eigenvector of the convolution matrix. Discuss the link between the eigenvectors and the DFT matrix. (To illustrate your results, you can take N=4.)

Pr.3: We have showed in lectures that if the random variable \mathbf{y} is linearly related to \mathbf{x} , that is $\mathbf{y} = a\mathbf{x} + b$, then the correlation coefficient $r_{xy} = 1$. In this problem, you are asked to show the reverse argument.

Show that if $r_{xy} = 1$ then **y** has to be necessarily in the form $\mathbf{y} = a\mathbf{x} + b$.

Pr.4: Use convolution matrices to find the inverse of the following matrix:

$$\left[\begin{array}{ccccc}
1 & 0 & 0 & \dots & 0 \\
a & 1 & 0 & \dots & 0 \\
0 & a & 1 & \dots & 0 \\
\vdots & \vdots & \vdots & & \vdots
\end{array}\right]$$

Pr.5: Problem 2.23 from Therrien

Pr.6: Problem 2.27 from Therrien

Pr.7: Problem 2.28 from Therrien

Pr.8: Problem 2.35 from Therrien