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variables, and we represent the corresponding s-domain variables with
uppercase letters. Thus

P{v} =V or v=2YV},
P{i} =1 or i=%YI},

Z{f} =F or f

§£”1{F},
and so on.

NOTE: Assess your understanding of this material by trying Chapter
Problem 12.26.

12.7 Inverse Transforms

The expression for V(s) in Eq. 12.40 is a rational function of s; that is, one
that can be expressed in the form of a ratio of two polynomials in s such
that no nonintegral powers of s appear in the polynomials. In fact, for lin-
ear, lumped-parameter circuits whose component values are constant, the
s-domain expressions for the unknown voltages and currents are always
rational functions of s. (You may verify this observation by working
Problems 12.28-12.31.) If we can inverse-transform rational functions of s,
we can solve for the time-domain expressions for the voltages and cur-
rents. The purpose of this section is to present a straight-forward and sys-
tematic technique for finding the inverse transform of a rational function.

In general, we need to find the inverse transform of a function that
has the form

_ N(S) - anS" + a"__lsn-l t--tasta
D(s)  b,s" + by ™+ bys + by

F(s)

(12.42)

The coefficients a and b are real constants, and the exponents #: and » are
positive integers. The ratio N(s)/D(s) is called a proper rational function
if m > n, and an improper rational function if 7 = n. Only a proper
rational function can be expanded as a sum of partial fractions. This
restriction poses no problem, as we show at the end of this section.

Partial Fraction Expansion: Proper Rational Functions

A proper rational function is expanded into a sum of partial fractions by
writing a term or a series of terms for each root of D(s). Thus D(s) must
be in factored form before we can make a partial fraction expansion. For
each distinct root of D(s), a single term appears in the sum of partial frac-
tions. For each multiple root of D(s) of multiplicity r, the expansion con-
tains r terms. For example, in the rational function

s+ 6
s(s + 3)(s + 1)’

the denominator has four roots. Two of these roots are distinct—namely,

at s = 0 and s = —3. A multiple root of multiplicity 2 occurs at s = —1.
Thus the partial fraction expansion of this function takes the form
s+ 6 _ K] K2 K3 K4

(12.43)

s = + — + .
ss +3)(s+ 1) s s+3 (s+1) s+1



The key to the partial fraction technique for finding inverse transforms
lies in recognizing the f(¢) corresponding to each term in the sum of par-
tial fractions. From Table 12.1 you should be able to verify that

el
s(s + 3)(s + 1)?

= (K, + K™ + Kste™ + Ky u(r). (12.44)

All that remains is to establish a technique for determining the coeffi-
cients (K, K3, K, . . .) generated by making a partial fraction expansion.
There are four general forms this problem can take. Specifically, the roots
of D(s) are either (1) real and distinct; (2) complex and distinct; (3) real
and repeated; or (4) complex and repeated. Before we consider each situ-
ation in turn, a few general comments are in order.

We used the identity sign = in Eq. 12.43 to emphasize that expanding
a rational function into a sum of partial fractions establishes an identical
equation. Thus both sides of the equation must be the same for all values
of the variable s. Also, the identity relationship must hold when both sides
are subjected to the same mathematical operation. These characteristics
are pertinent to determining the coefficients, as we will see.

Be sure to verify that the rational function is proper. This check is
important because nothing in the procedure for finding the various Ks will
alert you to nonsense results if the rational function is improper. We pres-
ent a procedure for checking the Ks, but you can avoid wasted effort by
forming the habit of asking yourself, “Is F(s) a proper rational function?”

Partial Fraction Expansion: Distinct Real Roots of D(s)

We first consider determining the coefficients in a partial fraction expan-
sion when all the roots of D(s) are real and distinct. To find a K associated
with a term that arises because of a distinct root of D(s), we multiply both
sides of the identity by a factor equal to the denominator beneath the
desired K. Then when we evaluate both sides of the identity at the root cor-
responding to the multiplying factor, the right-hand side is always the
desired K, and the left-hand side is always its numerical value. For example,

_ s +5)(s+12) _ K Ky K

FO) = 5++6) s 548 s+e 1249

To find the value of K, we multiply both sides by s and then evaluate both
sides at s = 0:

96(8’ + 5)(3 + 12) _ KzS K3S
(s +8)(s+6) |00 ' s+8|g s+6|g
or
96(5)(12) .
56 K, = 120. (12.46)

To find the value of K;, we multiply both sides by s + 8 and then evaluate
both sidesats = —8:

96(s + 5)(s + 12)
s(s + 6)

5= =Y

_ K](S + 8)
§

Ks(s +
+ K'l + M .
s=—8 (S + 6) 5s=-8
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or
96(-3)4) _ . _
82 2T
Then K3 is
96(s + S)(s + 12) ~
G A8 | BT

From Eq. 12.45 and the K values obtained,

96(s +5)(s +12) 120 48 2

s(s+8)(s+6) s s+6 s+8

(12.47)

(12.48)

(12.49)

At this point, testing the result to protect against computational errors is a
good idea. As we already mentioned, a partial fraction expansion creates
an identity; thus both sides of Eq. 12.49 must be the same for all s values.
The choice of test values is completely open; hence we choose values that
are easy to verify. For example, in Eq. 12.49, testing at either =5 or —12 is
attractive because in both cases the left-hand side reduces to zero.

Choosing —5 yields

T3 = M4 - 2420,

whereas testing —12 gives

120 48 72
— +—-—=-10-8+18=0.
St e g = 10-8+18=0

Now confident that the numerical values of the various Ks are correct, we

proceed to find the inverse transform:

_, ] 96(s + 5)(s + 12)
s(s + 8)(s + 6)

} = (120 + 48¢™% — 72¢™¥)u(r). (12.50)

Objective 2—Be able to calculate the inverse Laplace transform using partial fraction expansion and the Laplace

transform table

12.3 Find f(¢) if

65> + 26s + 26

FO = e+ 26+ 3)

Answer: f(t) = (3e¢™ + 27 + e yu(r).

12.4 Find f(¢) if

752 + 63s + 134
FO) =36+ a6+ 9)

Answer: f(r) = (4¢™ + 674 —

NOTE: Also try Chapter Problems 12.40(a) and (b).

3e 7 u(?).



Partial Fraction Expansion: Distinct Complex

Roots of D(s)

The only difference between finding the coefficients associated with dis-
tinct complex roots and finding those associated with distinct real roots is

that the algebra in the former involves complex numbers. We illustrate by
expanding the rational function:

_ 100(s + 3)
(s + 6)(s* + 65 + 25)°

F(s)

(12.51)

We begin by noting that F(s) is a proper rational function. Next we must
find the roots of the quadratic term s> + 6s + 25:

s2+ 65 +25=(s+3— jA)s + 3+ j4). (12.52)
With the denominator in factored form, we proceed as before:

100(s + 3) _
(s + 6)(s® + 65 + 25)

K, + Ko + K 12.53
s+6 s+3-j4 s+3+j4 (12:53)
To find K, K,, and K3, we use the same process as before:
100(s + 3) 100(=3)
bt SO = — "= 12, 12.54
TS24 65 + 25|56 25 ( :
B 100(s + 3) ___100( j4)
2T(sHO)s + 3+ )| gmzepy B+ A8
=6 — j8 = 10e 13 (12.55)
o= 100G+ 3) _ _ 100(—j4)
T+ 6)(s + 3 jA)|ess (B = jAN=8)
=6+ j8 = 10e /313 (12.56)
Then
100(s + 3) _ 12 10/-53.13°
(s+6)(s>+6s+25) s+6 s+3—jd
10/53.13°
+ . .
s+3+j4 (12:7)

Again, we need to make some observations. First, in physically realiz-
able circuits, complex roots always appear in conjugate pairs. Second, the
coefficients associated with these conjugate pairs are themselves conju-
gates. Note, for example, that K; (Eq. 12.56) is the conjugate of K,

12.7
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(Eq. 12.55). Thus for complex conjugate roots, you actually need to calcu-
late only half the coefficients.

Before inverse-transforming Eq. 12.57, we check the partial fraction
expansion numerically. Testing at —3 is attractive because the left-hand
side reduces to zero at this value:

~12 10 /-53.13° 10 /53.13°
12, 10/ L L

Fis) == —j4 j4
= —4 425 /3687° + 2.5 /~36.87°

—4 4+ 20+ 15+ 20 - j1.5 = 0.

We now proceed to inverse-transform Eq. 12.57:

- 100(s + 3)
(s + 6)(s* + 65 + 25)

} _ (—12e‘6‘ T 10e775313" oG- jAx

+ 10e 5313 "G+ (). (12.58)

In general, having the function in the time domain contain imaginary com-
ponents is undesirable. Fortunately, because the terms involving imaginary
components always come in conjugate pairs, we can eliminate the imagi-
nary components simply by adding the pairs:

10015313 =G4 1 1) J5313" o= (3+]4)

= 106—3r(e j4=-5313%) 4 e—i(41—53.13°))

= 20e™¥ cos(4t — 53.13°), (12.59)

which enables us to simplify Eq. 12.58:
1 100(s + 3)
(s + 6)(s® + 65 + 25)

= [=12¢™® + 20e™¥ cos(4t — 53.13°)]u(t). (12.60)

Because distinct complex roots appear frequently in lumped-parameter
linear circuit analysis, we need to summarize these results with a new
transform pair. Whenever D(s) contains distinct complex roots—that is,
factors of the form (s + « — jB)(s + a + jB)—a pair of terms of the form

K + K"
s+ta—jB s+a+t+jB

(12.61)

appears in the partial fraction expansion, where the partial fraction coeffi-
cient is, in general, a complex number. In polar form,

K = |Kle” = |K|/6°, (12.62)



where | K| denotes the magnitude of the complex coefficient. Then
K =|Kle? = |K|/—¢°. (12.63)

The complex conjugate pair in Eq. 12.61 always inverse-transforms as

o K __, K
T ols+a—jB s+ta+jB

= 2|K|e ™ cos(Bt + 0). (12.64)

In applying Eq. 12.64 it is important to note that K is defined as the coeffi-
cient associated with the denominator term s + a — jB, and K™ is defined
as the coefficient associated with the denominator s + a + j@.

v ASSESSMENT PROBLEM

Objective 2—Be able to calculate the inverse Laplace transform using partial fraction expansion and the Laplace

transform table

12.7

Inverse Transforms

12.5 Find f(t) if Answer:  f(¢) = (10e™ — 8.33¢™ sin 121)u(t).

_ 10(s? + 119)
(s + S)(s* + 10s + 169)

F(s)

NOTE: Also try Chapter Problems 12.40(c) and (d).

Partial Fraction Expansion: Repeated Real Roots of D(s)

To find the coefficients associated with the terms generated by a multiple
root of multiplicity r, we multiply both sides of the identity by the multiple
root raised to its rth power. We find the K appearing over the factor raised
to the rth power by evaluating both sides of the identity at the multiple root.
To find the remaining (r — 1) coefficients, we differentiate both sides of the
identity (r — 1) times. At the end of each differentiation, we evaluate both
sides of the identity at the multiple root. The right-hand side is always the
desired K, and the left-hand side is always its numerical value. For example,

100(.5 + 25) K] Kz K3 K4
—_— =+ s+ S+ ———.  (12.65)
s(s + 5) s (s+5y (s+5) s+5
We find K| as previously described; that is,
100(s + 25) 100(25)
= == =20. (12.66)
(S + 5)' $=0 125

To find K>, we multiply both sides by (s + 5)* and then evaluate both
sides at —5:

100(s + 25 K (s +5)°
1006 + 291 K EIN L ks + )
§ s==5 § §==3
+ Ky(s + 5)? , (12.67)
s==5
100(20)
=) =K X0+ K+ Ky X0+ K;x0

= K, = —400. (12.68)
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To find K we first must multiply both sides of Eq. 12.65 by (s + 5)*. Next
we differentiate both sides once with respect to s and then evaluate at

s = —5:
d | 100(s + 25) _ d| K(s + 5)°
ds s =5 ds s s

d
+ %‘[Kzlp—s

+ K + 5)]mrs

d 5
+ — + = .
5lKa(s + 5 ]i=s (12:69)

(s + 25
100 [M} = K5 = —100. (12.70)
A §s==5

To find K, we first multiply both sides of Eq. 12.65 by (s + 5)°. Next
we differentiate both sides twice with respect to s and then evaluate both
sides at s = —5. After simplifying the first derivative, the second deriva-
tive becomes

d| 25 _d | (s+57%(2s-5)
100 [ 2 L-s = K. [ 2 L

d d
+0+ a[K3].Y=—5 + E[2K4(3 + 5)]s=-s»

or
—40 = 2K,. (12.71)
Solving Eq. 12.71 for K, gives
K, = -20. (12.72)
Then
100(s + 25) _20 400 100 20 (12.73)

ss+5° 5 (s+5° (s+5)?F s+5
At this point we can check our expansion by testing both sides of
Eq. 12.73 at s = —25. Noting both sides of Eq. 12.73 equal zero when

s = =25 gives us confidence in the correctness of the partial fraction
expansion. The inverse transform of Eq. 12.73 yields

o {100(5 + 25)}
' s(s + 5)°

= [20 — 200r%™ — 100te™™ — 20e™>u(2). (12.74)
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v ASSESSMENT PROBLEM

Objective 2—Be able to calculate the inverse Laplace transform using partial fraction expansion and the Laplace
transform table

12.6 Find f(¢) if Answer:  f(¢) = (1 + 2te™ + 3e7 u(t).
4s? + 7s + 1
Fy =&+ D
s(s + 1)

NOTE: Also try Chapter Problems 12.41(a), (b), and (d).

Partial Fraction Expansion: Repeated Complex

Roots of D(s)

We handle repeated complex roots in the same way that we did repeated
real roots; the only difference is that the algebra involves complex num-
bers. Recall that complex roots always appear in conjugate pairs and that

the coefficients associated with a conjugate pair are also conjugates, so
that only half the Ks need to be evaluated. For example,

768
(s> + 65 + 25)%

After factoring the denominator polynomial, we write

F(s) = (12.75)

B 768
(s +3 — jA)’(s + 3 + jay’

F(s)

B K, LK
(s+3-j4? s+3-j4

N Ki L K
(s+3+j4? s+3+j4

(12.76)

Now we need to evaluate only K, and K, because K{ and K3 are conju-
gate values. The value of K is

_ 768
(s + 3 + ja)

K,
s=—3+j4

7
LR (12.77)

S8R

The value of K, is

d 768
K=& 1%
ds (S + 3+ ]4)“ s=-3+j4

_2(768)
(s + 3 + jay

s==3+;4

_2(768)
(/8)’

—-j3=3/-90°. (12.78)
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From Eqs. 12.77 and 12.78,

K; = —12, (12.79)

Ky =j3=13/90°. (12.80)

We now group the partial fraction expansion by conjugate terms to obtain

F(s)=[ 2,z ]
(s +3—j4)* (s+3+ja)?

+(34—90° 3 /90° )

+ 12.81
s+3—-j4 s+3+ 4 ( )

We now write the inverse transform of F(s):
f@t) = [24te™ cos 4t + 6¢™ cos(4t — 90°)]u(t). (12.82)

Note that if F(s) has a real root a of multiplicity r in its denominator,
the term in a partial fraction expansion is of the form

_K
(s + a)"

The inverse transform of this term is

r=1_—at
FJZ“{( K }=Kt ¢ u(t). (12.83)

s+a] (—1)

If F(s) has a complex root of & + jB of multiplicity r in its denominator,
the term in partial fraction expansion is the conjugate pair

K N K-
(s+a—jB)y (s+a+iB)

The inverse transform of this pair is

“fortr )
(st+a—-jB)y (st+ta+jp)

r=1
- |:z2’—|[<_lt—1)' e cos(Bt + 0):|ll(f)- (12.84)

Equations 12.83 and 12.84 are the key to being able to inverse-transform
any partial [raction expansion by inspection. One further note regarding
these two equations: In most circuit analysis problems, r is seldom greater
than 2. Therefore, the inverse transform of a rational function can be han-
dled with four transform pairs. Table 12.3 lists these pairs.



TABLE 12.3  Four Useful Transform Pairs

Pair Nature of
Number Roots F(s)
1 Distinct real £
s+a
K
2 Repeated real PRRY]
(s + a)
. . K K-
+
3 Distinct complex sta-jB s+a+ B
K
4 Repeated complex

v ASSESSMENT PROBLEM

(s + a — jBY i(; +a+ By

Note: In pairs 1 and 2, K is a real quantity, whereas in pairs 3 and 4, K is the complex quantity [K| /8.

12.7  Inverse Transforms

f@

Ke™u(t)
Kre™u(r)
2|K|e ™ cos (Bt + O)u(r)

2t|K e cos (Bt + Q)u(t)

Objective 2—Be able to calculate the inverse Laplace transform using partial fraction expansion and the Laplace

transform table

12.7 Find f(¢) if Answer: f(t) = (—20te ™ cost + 20e % sin £)u(t).

40

F&) = G vas sy

NOTE: Also try Chapter Problem 12.41(e).

Partial Fraction Expansion: Improper Rational Functions

We conclude the discussion of partial fraction expansions by returning
to an observation made at the beginning of this section, namely, that
improper rational functions pose no serious problem in finding inverse
transforms. An improper rational function can always be expanded into
a polynomial plus a proper rational function. The polynomial is then
inverse-transformed into impulse functions and derivatives of impulse
functions. The proper rational function is inverse-transformed by the
techniques outlined in this section. To illustrate the procedure, we use
the function

s 4+ 135 + 665% + 200s + 300

F v} =
($) s>+ 95 + 20

(12.85)

Dividing the denominator into the numerator until the remainder is a
proper rational function gives

30s + 100

F(s) = s2 4 45 + 10 + S Y
s+ 9s + 20

(12.86)

where the term (30s + 100)/(s*> + 9s + 20) is the remainder.
Next we expand the proper rational function into a sum of
partial fractions:

30s +100 _ 30s+100 _ -20 50
$2+95+20 (s+4)(s+5) s+4 s+5

(12.87)
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Substituting Eq. 12.87 into Eq. 12.86 yields

2 20 50
F(s)=s"+4s + 10 — + . .
(sy=s5"+4s + 10 v rd 315 (12.88)
Now we can inverse-transform Eq. 12.88 by inspection. Hence
d’s(t)  ds(t)
t) = + 44—+
1) " 4=+ 108(1)

— (20e™ = 507 u(r). (12.89)

Objective 2—Be able to calculate the inverse Laplace transform using partial fraction expansion and the Laplace

transform table

12.8  Find f(1) if
(55% + 295 + 32)
(s +2)(s + 4)

F(s) =

Answer:  f(t) = 58(t) — (3™ — 2 ¥)u(r).

NOTE: Also try Chapter Problem 12.42(c).

12.9 Find f(¢) if
(257 + 8% + 25 — 4)
(s*+5s+4)

F(s) =

Answer:  f(t) = 2%(;) — 28(t) + de™*u(t).

12.8 Poles and Zeros of F(s)

The rational function of Eq. 12.42 also may be expressed as the ratio of
two factored polynomials. In other words, we may write F(s) as

_ K(Y + Z1)(‘9 + ZZ)“'(S + zll)
(s +p)(s+p)(s+pn)’

where K is the constant a,,/b,,. For example, we may also write the function

F(s)

(12.90)

8s? 4+ 120s + 400

F(s) =
) = S ¥ 2057 + 7057 + 1005 + 48
as
8(s + 155 + 50
F(s) = ——o0_* 155 % 50)
2(s” + 10s” + 3557 + 505 + 24)
4(s + 5)(s + 10
= . (s + 5)(s ) . (12.91)
(s + D +2)(s +3)s+4)
The roots of the denominator polynomial, that is, —py, —p2, —p3, .. .,

— P are called the poles of F(s); they are the values of s at which F(s)
becomes infinitely large. In the function described by Eq. 12.91. the poles
of F(s) are —1, =2, =3, and —4.

The roots of the numerator polynomial, that is, —z;, —z7, =23, . . .,
—2z,,, are called the zeros of F(s); they are the values of s at which F(s)
becomes zero. In the function described by Eq. 12.91, the zeros of F(s)
are —5 and —10.



