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Forced
vibrations and
resonance

THE PRECEDING CHAPTER was concerned entirely with the free
vibrations of various types of physical systems. We shail now
turn to the remarkable phenomena, of profound importance
throughout physics, that occur when such a system—a physical
oscillator—is subjected to a periodic driving force by an external
agency.

The key word is “resonance.” Everybody has at least a
qualitative familiarity with this phenomenon, and probably the
most striking feature of a driven oscillator is the way in which
a periodic force of a fixed size produces very different results
depending on its frequency. In particular, if the driving frequency
is made close to the natural frequency, then (as anyone who has
pushed a swing knows) the amplitude of oscillation can be made
very large by repeated applications of a quite small force. This is
the phenomenon of resonance. A force of about the same size
at frequencies well above or well below the resonant frequency is
much less effective; the amplitude produced by it remains quite
small. To judge by the quotation at the beginning of this chapter,
the phenomenon has been recognized for a very long time.} It
1As Alexander Wood remarks in his book Acoustics (Blackie & Son, London,
1940): “It seems difficult to believe that legislation should be designed to
cover a situation that had never arisen.” The example does seem rather
bizarre, however, and H. Bouasse, the French physicist who drew attention
to this Talmudic pronouncement, reported that he had himself reared a large

number of cocks, none of which developed a habit of putting their heads
inside glass vases!
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is typical of this type of motion that the driven system is com-
pelled to accept whatever repetition frequency the driving force
has; its tendency to vibrate at its own natural frequency may be
in evidence at first, but ultimately gives way to the external
influence.

To provide some initial feeling for the theoretical description
of the resonance phenomenon, without getting too involved with
analytical details, we shall begin by considering the simple though
physically unreal case of an oscillator in which the damping effect
is entirely negligible.

UNDAMPED OSCILLATOR WITH HARMONIC FORCING

We shall take our system to be the usual mass m on a spring of
spring constant k. To this we shall imagine the application of a
sinusoidal driving force F = Fgcoswt. The value of v/k/m,
representing the natural angular frequency of the system, will be
denoted by wo. Then the statement of the equation of motion,
in the form ma = net force, is

d*x
mﬁ = —kx 4+ Focos wt
or
m‘izf+k = Focos wt @-1)
dr2 x = foc

Before we discuss this differential equation of motion in detail,
let us consider the situation qualitatively. If the oscillator is
driven from its equilibrium position and then left to itself, it will
oscillate with its natural frequency wo. A periodic driving force
will, however, try to impose its own frequency® w on the oscillator.
We must expect, therefore, that the actual motion in this case is
some kind of a superposition of oscillations at the two frequencies
w and wo. The mathematically complete solution of Eq. (4-1) is
indeed a simple sum of these two motions. But because of the
inevitable presence of dissipative forces in any real system, the
free oscillations will eventually die out. The initial stage, in which
the two types of motion are both prominent, is called the transient.
After a sufficiently long time, however, the only motion in effect
present is the forced oscillation, which will continue undiminished
at the frequency w. When this condition has been achieved, we

1To avoid tiresome repetitions, we shall often refer to w simply as “frequency”
rather than “angular frequency” in contexts where no ambiguity is entailed.
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have what is called a steady-state motion of the driven oscillator.

Later we shall analyze the transient effects, but for the present
we shall focus our attention exclusively on the steady state of
the forced oscillation. In an ideal undamped oscillator, the effect
of the natural vibrations would never disappear, but we shall
temporarily ignore this embarrassing fact for the sake of the
simplicity that absence of damping brings to the forced-motion
problem.

The most striking feature of the motion will be the large res-
ponse near w = wy, but before embarking on the solution of Eq.
(4-1) in its entirety, let us point to some features of the motion in
the extremes of very low or very high values of the driving fre-
quency w. If the driving force is of very low frequency relative to
the natural frequency of free oscillations, we would expect the par-
ticle to move essentially in step with the driving force with an am-
plitude not very different from Fo/k (= Fo/mwy?), the displace-
ment which a constant force Fy would produce. This is equivalent
to stating that the term m(d®x/dt?) in Eq. (4-1) plays a relatively
small role compared to the term kx at very low frequencies, or
in other words that the response is controlled by the stiffness
of the spring. On the other hand, at frequencies of the driving
force very large compared to the natural frequency of free oscilla-
tion, the opposite situation holds. The term kx becomes small
compared to m(d2x/dt?) because of the large acceleration asso-
ciated with high frequencies, so that the response is controlled by
the inertia. In this case we expect a relatively small amplitude of
oscillation and this oscillation should be opposite in phase to
the driving force, because the acceleration of a particle in har-
monic motion is 180° out of phase with its displacement. It is
still not apparent from these remarks that the resonant amplitude
should greatly exceed that at low or high frequencies, but this
we shall now show.

To obtain the steady-state solution of Eq. (4-1) we set

x = Ccos wt 4-2)

We are assuming, in other words, that the motion is harmonic,
of the same frequency and phase as the driving force, and that
the natural oscillations of the system are not present. It must
be kept in mind that the assumption of Eq. (4-2) is tentative and
we must be prepared to reject it if we fail to find a value of the
as-yet-undetermined constant C such that Eq. (4-1) is satisfied
for arbitrary values of w and ¢. Differentiating Eq. (4-2) twice

Undamped oscillator with harmonic forcing
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Fig. 4-1 Amplitude

of forced oscillations F,
as a function of the k
driving frequency

(assuming zero damp- on
ing.) The negative
sign of the amplitude
Jor @ > wo corre-
sponds to a phase

lag = of displacement
with respect to driving
Jorce.

with respect to 7, we get

é = —w’Ccoswt
drz @

Substituting in Eq. (4-1) we thus have
—mw?C cos wt + kC cos wt = Fo cos ot

and hence

Fo _ Fo/m

C= E—1
k— mw?2 we2 — o2

@-3)

Equation (4-3) satisfactorily defines C in such a way that Eq. (4-1)
is always satisfied. Thus we can take it that the forced motion is
indeed described by Eq. (4-2), with C depending on w according
to Eq. (4-3). This dependence is shown graphically in Fig. 4-1.
Notice how C switches abruptly from large positive to large
negative values as w passes through wq. The resonance phenom-
enon itself is represented by the result that the magnitude of C,
without regard to sign, becomes infinitely large at w = wg exactly.

Although Egs. (4-2) and (4-3) between them describe in a
perfectly adequate way the solution of this dynamical problem,
there is a better way of stating the result, more in accord with our
general description of harmonic motions. This is to express x
in terms of a sinusoidal vibration having an amplitude A4, by
definition a positive quantity, and a phase a at t = 0.

x = Acos(wt + o) “4-4)

It is not difficult to see that this implies putting 4 = |C| and
giving o one or other of two values, according to whether the
driving frequency w is less or greater than wg:
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Fig. 4-3 Motion of
simple pendulums re-
sulting from forced
harmonic oscillation
of the point of sus-
pension along the line
AB. (0) v < wq.
(b)) @ > wo.
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Alw)
(a)
Fo oy
k
0 (7))
Wy
Fig 4-2 (a) Abso-
lute amplitude of -
Jorced oscillations as
a function of the driv-
ing frequency, for
zero damping. (b)
(b) Phase lag of the
displacement with re-
spect to the driving
Jforce as a function of 0 w

frequency.

w<wera=0

W>wia=T

The response of the system over the whole range of w is then
represented by separate curves for the amplitude 4 and the
phase a, as shown in Fig. 4-2. The infinite value of 4 at v = wy,
and the discontinuous jump from zero to = in the value of « as
one passes through w, must be unphysical, but, as we shall see,
they represent a mathematically limiting case of what actually
occurs in systems with nonzero damping.

The actual reversal of phase of the displacement with respect
to the driving force (i.e., from being in phase to being 180° out

P b o Q' P
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of phase) is shown in a very direct way by the behavior of a simple
pendulum that is driven by moving its point of suspension back
and forth horizontally in SHM. The situations for frequencies
well below and well above resonance are illustrated in Fig. 4-3.
Once the steady state has been established, the pendulum behaves
as though it were suspended from a fixed point corresponding to
a length greater than its true length / for w < wg, and less than
Ifor w > wyp. In the former case the motion of the bob is always
in the same direction as the motion of the suspension, whereas
in the latter case it is always opposite.

THE COMPLEX EXPONENTIAL METHOD FOR FORCED OSCILLATIONS

Having dealt with this simplest of forced vibration problems in
terms of sinusoidal functions, let us do it again using the complex
exponential. This has no special merit as far as the present
problem is concerned, but the technique, illustrated here in
elementary terms, will show to great advantage when we come to
deal with the damped oscillator. Our program is as follows:

1. We start with the physical equation of motion as given
by Eq. (4-1):

d’x

mﬁ_" kx = Fo cos wt

2. We imagine the driving force Fy cos wt as being the pro-
jection on the x axis of a rotating vector Fy exp( jwt), as shown
in Fig. 4-4(a), and we imagine x as being the projection of a
vector z that rotates at the same frequency w [Fig. 4-4(b)].

3. We then write the differential equation that governs z:

Fig. 44 (a) Complex representation of sinusoidal
driving force. (b) Complex representation of displace-
ment vector in the forced oscillation.

iof ol + o

(a) (b}
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d*z

mﬁ + kz = Foejwl 4-5)

4. We try the solution
2 = AP

Substituting in Eq. (4-5) this gives us
(—mw’A + k)’ = Foe™*

which can be rewritten as follows:

(t.uo2 - w2)A = ﬂ)e—"m
m

F
= Lcosa — jFi)sina 4-6)
m m

This contains two conditions, corresponding to the real and
imaginary parts on the two sides of the equation:

(w02— w2)A = @Cosa
m
0= — @sina
m

These clearly lead at once to the solutions represented by the
two graphs in Fig, 4-2.

FORCED OSCILLATIONS WITH DAMPING

83

At the end of Chapter 3 we analyzed the free vibrations of a
mass-spring system subject to a resistive force proportional to
velocity. We shall now consider the result of acting on such a
system with a force just like that considered in the previous
section. The statement of Newton’s law then becomes

d*x dx
mos = —kx—b7i;+Focoswt
or
2
d’x b dx k Fo
dr2 +m dt +mx_ mcoswt

Putting k/m = wq?, b/m = 7, this can be written
d’x dx 2 Fo
gt Yot wox =" cosat Cal))

Let us now look for a steady-state solution to this equation.

Forced oscillations with damping



We shall go at once to the complex-exponential method; our
basic equation then becomes the following:

d’z dz 2 Fo ju

ﬁ+‘ydt+woz—me 4-8)
We shall now assume the following solution:

z = 4¢P 4-9)
with
x = Re (2)

Notice that we have assumed a slightly different equation for z
than we did in the previous section; we have written the initial
phase of z as — § instead of +a. Why did we do this? The clue
is to be found in Eq. (4-6). The right-hand side of the equation
can be read, in geometrical terms, as an instruction to take a
vector of length Fo/m and rotate it through the angle —a with
respect to the real axis. We are going to get a very similar equa-
tion now, and it will simplify things if we define our angle,
formally at least, as representing a positive (counterclockwise)
rotation. That is, & is formally a positive phase angle by which
the driving force leads the displacement.

Substituting from Eq. (4-9) into Eq. (4-8) we thus get
(—’4 + jYod + w4 = %"e"‘”
Therefore,

(o — )4 + Ywd = % L 4-10)

Now the elegance and perspicuity of the complex exponential
method are really displayed. We can read Eq. (4-10) as a geo-
metrical statement. The left-hand side tells us to draw a vector
of length (wo% — w?%)4, and then at right angles to it a vector of

Fig. 4-5 Geometrical representation of Eq. (4-10).

Foutd
- N—
Folm Jyewd Fylm
Jyed
‘\5 90° \6

((002 s wz) A wnzA
(a) (b)
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length YwA. The right-hand side tells us to draw a vector of length
Fy/m at an angle & to the real axis. The equation requires that
these two operations bring us to the same point, so that the
vectors form a closed triangle, as shown in Fig. 4-5(a).! Clearly,
we have

(w02 —_ wz)A = fgcos é
m

YwA = @ sin &
m

Therefore,
3 Fo/m
AW = [GF = e + Gl @-11)
Yw
tan 6(w) = w0? — w?

These same results can of course be obtained without introducing
complex exponentials. One simply assumes a solution of the form

x = Acos(wr — 8) (“4-12)
Alw)
(a)
Fy
T —
0 o, J w
wy

&lew)

Fis Fig. 4-6 (a) De-
pendence of amplitude
upon driving frequency

(b) Jor forced oscillations
@2 with damping.
(b) Phase of displace-
ment with respect to
0 5 driving force as a
Wy Sfunction of the driving

Jfrequency.

1You may actually prefer to read the left-hand side of Eq. (4-10) even more
literally (in terms of its origins) as a sum of three vectors,

w024 + jywd + (j)2w2A4
as shown in Fig. 4-5(b).
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and substitutes this in Eq. (4-7), which leads to the equation
(w02 — wz)A cos(wt — &) — YwAsin(wt — 8) = %cos wt

This must then be solved as a trigonometric identity true for all
t. The analysis is certainly not difficult, but it is less transparent

Driving amplitude 1

//k Variable drive

Response :

(a)

Fig. 47 (a) Di- 180

agrammatic sketch of
the “Texas Tower,” a
mechanical resonance
apparatus developed
by J. G. King at the
Education Research
Center, M.LT. (b)
Experimental
resonance curves for
amplitude and phase
lag obtained with this E‘::_ w27
apparatus. (Measure- 0 : L I/l L_lge
ments by G. J. 04 06 08 10 1.2
Churinoff, M.LT. Frequency, hz

class of 1967.) (b)

Amplitude, cm
N
I
Phase lag
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and instructive than the other.

The type of dependence of amplitude 4 and phase angle §
upon frequency w, for an assumed constant magnitude of Fj,
is shown in Fig. 4-6. (Remember that § is the angle by which
the driving force leads the displacement, or by which the dis-
placement lags behind the driving force.) These curves have a
clear general resemblance to those in Fig. 4-2 for the undamped
oscillator. As can be seen from the expression for tan § in equa-
tions (4-11), the phase lag increases continuously from zero
(at @ = 0) to 180° (in the limit w — o0); it passes through 90°
at precisely the frequency w,. Less obvious is the fact that the
maximum amplitude is attained at a frequency w,, somewhat less
than wg; in most cases of any practical interest, however, the
difference between w,, and w, is negligibly small.

These are some of the calculated features of a forced, damped
oscillator. How nearly are they exhibited by actual physical
systems? Figure 4-7 provides an answer in the form of experi-
mental results obtained with the type of physical system we have
been discussing. It is, to be sure, not a natural system but an
artificial one, devised specifically to display these features. Never-
theless, there is satisfaction in seeing that the pattern of behavior
described by our mathematical analysis (which might, after all,
bear no relation to reality) does, in fact, correspond quite well to
the behavior of a system containing a real spring and a real
viscous damping agency. This is the same system for which we
showed the decay of free oscillations in Fig. 3-12.

The features of Fig. 4-6 can also be nicely demonstrated in a
simple but, as it were, backhanded way, by applying a driving
force of some fixed frequency to a whole collection of oscillators
of different natural frequencies. This is readily done by a modi-
fication of an arrangement due to E. H. Barton (1918) in which
a number of light pendulums of different lengths are hung from
a horizontal bar that is rocked at the resonance frequency of
one pendulum in the middle of the range, as shown in Fig. 4-8(a).
When photographed edgewise the motions of the light pendulum
bobs, all driven at the same frequency, display, qualitatively at
least, the expected phase relationships. This is indicated in
Fig. 4-8(b), which shows the displacements of the small pen-
dulums at the instant when the driving bar is passing from left
to right through its equilibrium position, and then at a slightly
later instant. The short pendulums (for which wy > w) have

Forced oscillations with damping
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Synchronous
motor

©6
Pendulums ~©5} To Strobe
(70 cm to 100 cm) 90

r-’/ Amplifier

] -” Oscillator
Strobe Light

(a)

(b)

Fig. 4-8 A modern version of Barton's pendulums experiment. (a) A general
sketch of the arrangement. The strobe light flashes once per oscillation at a
controllable point in the cycle. (b) Displacements of the pendulums when the
driving force is passing through zero (left) and at a somewhat later instant
(right). In the latter photograph, note that the shorter pendulums have moved
in the same direction as the driver and the longer pendulums have moved in the
opposite direction, corresponding to & < 90° and & > 90° respectively.
(Photos by Jon Rosenfeld, Education Research Center, M.L.T.).
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8 < 90°, the long ones (for which wy < w) have § > 90°, and
so move contrary to the driver, and the pendulum in exact
resonance lags by 90°, being at maximum negative displacement
as the driver passes through zero.

EFFECT OF VARYING THE RESISTIVE TERM

In discussing the decay of free vibrations at the end of Chapter 3,
we introduced the “quality factor” Q, the pure number equal to
the ratio wo/Y. The larger the value of Q, the less the dissipative
effect and the greater the number of cycles of free oscillation for
a given decrease of amplitude. We shall now indicate how the
behavior of the resonant system changes as the Q of the system
is changed, other things being equal.

We shall put Eq. (4-11) (for A and tan &) into more con-
venient form for this purpose. First, substituting v = wy/Q

gives us
_ Fo/m
A) = [ = P + (awo/ O
0 @-13)
tan 8(w) = — ot
w2 — w

Furthermore, it will prove convenient for many purposes to use
the ratio w/wq, rather than w itself, as a variable. With this in
mind we shall rewrite equations (4-13) in the following form:

)

Fo wo/w
= mwo2 wo w\2 1 Jv2
[(: - w—o) * 'Q—]
or
_ @ wo/w
K Tfoo o) 1 u2 4-14)
[(: - w—o) * a]
and
tan 6 = wol/Qw
@ wo

In Fig. 4-9 we show curves calculated from equations (4-14) to
show the variations with frequency of amplitude 4 and phase
lag & for different values of Q. Most of the change of & takes
place over a range of frequencies roughly from wo(1 — 1/Q) to
wo(l + 1/Q), ie., a band of width 2wy/Q centered on wy. In
the limit O — oo the phase lag jumps abruptly from zero to = as
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Fig. 4-9 (a) Ampli-
tude as function of
driving frequency for
different values of Q,
assuming driving force
of constant magnitude
but variable frequency.
(b) Phase difference &
as function of driving
frequency for different
values of Q.
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one passes through wy. Clearly the frequency wg is an important
property of the resonant system, even though it is not (except
for zero damping) the frequency with which the system would
oscillate when left to itself.

The amplitude A passes through a maximum for any value
of Q greater than 1/4/2—i.e., for all except the most heavily
damped systems. This maximum amplitude 4,, occurs, as we
noted earlier, at a frequency w,, that is less than w,. If we denote
by A4, the amplitude F,/k obtained for w — 0, then one can
readily show that the following results hold:

1 \!2
Wy, = WO <1 - 2—Q—2')
- Qo
1 \!2
<1 - w)

In Table 4-1 we list some values of w,/wg and 4,,/A4, for par-
ticular Q values. Notice that in most cases (Q > 5) the peak

4-15)
Am = AO

TABLE 4-1: RESONANCE PARAMETERS OF DAMPED SYSTEMS

Q Wn/wo An/Ao

1/4/2 0 1

1 1/4/2 = 0.707 2/4/3 = 1.15

2 Vi = 0.935 8/V14 = 2.06

3 VI = 0973 18/4/35 = 3.04

5 VE = 0.990 50/4/99 = 5.03
>1 1 — 1/4Q? Ql1 + 1/(80%)]

amplitude is close to being Q times the static displacement for
the same F,, and it occurs at a frequency quite close to wy. At
the frequency wy itself the amplitude is precisely QAo.

Figure 4-9 demonstrates how the sharpness of tuning of a
resonant system varies with Q. The arrangement of an array of
pendulums, as in Fig. 4-8(a), can be used to display the phe-
nomenon. The @ can be increased, without changing w,, by
making the bobs of the driven pendulums more massive. Figure
4-10 shows time-exposure photographs of the pendulums, first
unloaded and then with two different degrees of loading. This
clearly reveals the improvement in sharpness of tuning, even
though the absolute amplitudes of oscillation in the three pictures
are not strictly comparable. An instantaneous flash photograph
is superimposed on each time-exposure photograph, displaying

Effect of varying the resistive term



(a)

(b) (c)

Fig. 4-10 Time exposure photograph of Barton's
pendulums (cf. Fig. 4-8) showing resonance properties.
The pendulum bobs were light styrofoam spheres (from
PSSC Electrostatics Kit). (a) Pendulum bobs unloaded
and therefore heavily damped, showing little selective
resonance. (b) Each pendulum bob lightly loaded (with
one thumbtack) giving moderate damping and more
selective resonance. (c) Each pendulum bob heavily
loaded (one thumbtack + one small washer) giving
small damping and fairly high Q. (Photos by Jon
Rosenfeld, Education Research Center, M.1.T.) In each
case an instantaneous flash photograph is superim-
posed in order to display the phase relationships among
the driven pendulums.

the phase relationships among the driven pendulums for different
0, corresponding to Fig. 4-9(b).

TRANSIENT PHENOMENA

92

Our discussion so far has taken the steady state as being com-
pletely established, as if the driving force Fgcos wi had been
acting since far back in the past and all trace of any natural
vibrations of the driven system had vanished. But of course in
any real situation the driving force is first brought into action
at some instant—which failing any reason to the contrary we
might as well call # = 0—and it is only some time later that our
steady-state conditions supervene. This transient stage may
occupy a very long time indeed if the damping of the free vibra-
tions is extremely small, and we shall even begin (again because
of its mathematical simplicity) with the case in which the damping
is effectively zero.

Forced vibrations and resonance
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To make the problem quite explicit, let us suppose that we
have a mass—spring system which, up to z = 0, is at rest. At
t = 0 the driving force is turned on, and thereafter the motion is
governed by Eq. (4-1), which we introduced at the beginning of
this chapter:

d*x
ME'F kx = Fgcos wt
or
2
Eidt_: + wolx = % cos wt 4-16)

Now we have already seen how this differential equation of
the forced motion leads to the following equation for x:

Fo/m
x = m cos wt @-17)

This equation, however, contains no adjustable constants of
integration; the solution is completely specified by the values of
m, wg, Fo, and w, After our remarks in Chapter 3 about the need
to introduce two constants of integration in solving a second-order
differential equation, you may have wondered what became of
them in this case. More specifically and, as it were, empirically,
we can look at what Eq. (4-17) would give us for ¢ = 0, the in-
stant at which, according to our present assumptions, the driving
force is first switched on. The result is impossible! If, for example,
we suppose w < wo, the displacement at 1 = 0 immediately as-
sumes a positive value. But no system with nonzero inertia, acted
on by a finite force, can be displaced through a nonzero distance
in zero time. And if we suppose w > wg, the result is a still
greater absurdity—the mass would suddenly move to a negative
displacement under the action of a positive force. Quite clearly
Eq. (4-17) does not tell the whole story, and it is the transient
that comes to the rescue.

Mathematically, the situation is this. Suppose that we have
found a solution—call it x;—to Eq. (4-16) so that

d2X1 2 Fo

S - wo x] = — cOs wt
d12+ 0 X1 =—

And now suppose that we have also found a solution—call it xo—
to the equation of free vibration, so that

dzxz 2
—52— + wo X2 = 0

Transient phenomena
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Then by simple addition of these two equations we have

d¥(x1 + x2)

; R
2 + wo (x1 + x2) = - cos wt

Thus the combination x; + x. is just as much a solution of the
equation of forced motion as is x; alone. We have no mathe-
matical reason to exclude the contribution from x,; on the
contrary, we are absolutely obliged to include it if we are to take
care of the conditions existing at t = 0. We can say much the
same thing, although less precisely, from a purely physical stand-
point. The oscillations resulting from a brief impulse given to
the system at ¢ = 0 would certainly possess the natural frequency
wo. It is only if a periodic force is applied over many cycles that
the system learns, as it were, that it should oscillate with some
different frequency w. Thus one should expect that the motion,
at least in its initial stages, contains contributions from both
frequencies.

Turning now to the precise equations, the equation of the
free vibration of frequency w¢ does contain two adjustable con-
stants—an amplitude and an initial phase. Let us call them B
and 8 because we are using them to fit conditions at the beginning
of the forced motion. Then, according to the ideas outlined
above, we propose that the complete solution of the forced-
motion equation is as follows:

x = Bcos (wot + B) + Ccos wt (4-18)
where
Fo/m
- w02 — w2

We can now tailor Eq. (4-18) to fit the initial conditions (in
this case) that x = 0 and dx/dt = O at ¢z = 0. For the condition
on x itself we have

0=Bcosg+ C
Also, differentiating Eq. (4-18), we have
% = —awoB sin(wot + B) — wC sin wt
Hence, at r = 0, we have
0 = —woBsin B
The second condition requires that 3 = 0 or =. Taking the
former (the final result is the same in either case) we get B = —C,

so that Eq. (4-18) becomes

Forced vibrations and resonance
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x = C(cos wt — cos wot) 4-19)

which is a typical example of beats, as shown in Fig. 4-11(a).
In the complete absence of damping these beats would continue
indefinitely; no steady state corresponding to Eq. (4-17) alone
would ever be reached. It is perhaps worth noting that the
conditions just after + = 0 now make excellent sense. If wt,
wo? K 1, we can put

2.2
coswt =~ 1 — or

2
2.2
wo' t

coswol = 1 — 0

2

Therefore,

o _Fo/m (o’ =) _1F
w2 — w2 2 2 m
Thus, precisely as we should expect, before the restoring forces
have been called into play the mass starts out in the direction of
the applied force with acceleration Fo/m.

You may wonder whether, granted that Eq. (4-18) can be
Jjustified as a solution of the forced-motion equation, it is therefore
the solution. Here we shall merely assert that there is a uniqueness
theorem for such differential equations, and if we have found any
solution with the requisite number of adjustable constants, it is
indeed the only solution of the problem.?!

Turning now to the more realistic case in which damping is
assumed to be present, we can without more ado postulate the
following combination of free and steady-state motions:

x = Be "% cos(wit + B) + A cos(wt — 8) (4-20)

where

o = w2—£1/2
1 0 4

and A, § are given by Eq. (4-11).

We shall not attempt here to delve into the purely mathe-
matical details of fitting the values of B and 8 to the values of x
and dx/drat r = 0. Itis just a more complicated version of what
we did above for the undamped oscillator. In Fig. 4-11(b),
however, we show the kind of motion that occurs—in general
tFor a fuller discussion see, for example, W. T. Martin and E. Reissner,

Elementary Differential Equations, Addison-Wesley, Reading, Mass., 2nd ed.,
1961.

Transient phenomena



(a)

Fig. 4-11 (a) Re- (b)

sponse of an un-
damped harmonic os-
cillator to a periodic
driving force, as de-
scribed by Eq. (4-19).
This beat pattern
would continue in-
definitely. (b) Tran-
sient behavior of a
damped oscillator
with a periodic driving
force off resonance.
(c) Transient behavior
at exact resonance,  (C)
showing smooth
growth toward steady
amplitude. (Photos
by Jon Rosenfeld,
Education Research
Center, M.IT.)

TR
HHIIHIH
TTHH

*‘WM Il

I‘”u (U0
VtJmnnmnmnnmumu.

what looks like an attempt at beats, settling down to a motion
of constant amplitude at the driving frequency w. Figure 4-11(c)
shows the much simpler transient effect that occurs when the
damped oscillator is driven at its own natural frequency.

THE POWER ABSORBED BY A DRIVEN OSCILLATOR

It will often be a matter of importance and interest to know at
what rate energy must be fed into a driven oscillator to maintain
its oscillations at a fixed amplitude. As in any other dynamical
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situation, we can calculate the instantaneous power input, P,
as the driving force times the velocity:
dW _ _dx

P==t%

Once again, let us consider first the undamped oscillator, for
which (because there are no dissipative effects) the mean power
input must come out to be zero. Taking the equations already
developed, and assuming the steady-state solution, we have

= Fo

F = Fycos wt

X = w—:j)—/;%cosm = Ccos wt
Therefore,

v = —wCsin wt

P = —wCFy sin wt cos wt

This power input, being proportional to sin 2wt, is positive half
the time and negative for the other half, averaging out to zero
over any integral number of half-periods of oscillation. That is,
energy is fed into the system during one quarter-cycle and is
taken out again during the next quarter-cycle.

Coming now to the forced oscillator with damping, we have

x = Acos(wt — )
Therefore,

v = —wAdsin(wt — )
We can write this as

v = —vgsin(wt — §)

where vy is the maximum value of v for any given values of F
and w. Taking the value of 4 from Eq. (4-14) we have

Fowo/k

I:wo w2 1:|1I2
(Z‘w“o) o

The value of v, passes through a maximum at w = wg, exactly,
a phenomenon that we can call velocity resonance.

Now let us consider the work and the power needed to main-
tain the forced oscillations. We have

vo(w) = 4-21)

P = —Fovo cos wt sin(wr — §)
= —Fouvo cos wt(sin wt cos & — cos wt sin §)
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ie.,
P = —(Fovo cos 8) sin wt cos wt + (Fovg sin 8) cos2wt  (4-22)

If we average the power input over any integral number of cycles
the first term in Eq. (4-22) gives zero. The average of cos? wt,
however, is 3, so that the average power input is given by

P = }Fovosin 6 = $wAFo sin

With the help of Egs. (4-14) and (4-21) this becomes

- F02w0 1
P(w) 4-23)
HO (wo _w)*, 1
w W Q2

We see that this power input, like the velocity, passes through a
maximum at precisely w = wq for any Q. The maximum power
is given by

P = Fo’woQ _ QFo°
T2k 2mwo

4-24)

The dependence of P on w for various Q is shown in Fig. 4-12(a).
It may be noted that the power input drops off toward zero for
very low and very high frequencies, and that except for low Q
the curves are nearly symmetrical about the maximum. It is
convenient to define a width for these power resonance curves by
taking the difference between those values of w for which the power
input is half of the maximum value. This can be done in a par-
ticularly clear and useful way if (as in most cases of interest) Q
is large. This means that the resonance is effectively contained
within a narrow band of frequencies close to wy. It is then possible
to write an approximate form of the equation for P(w), based on
the following piece of algebra:

wo w _ wo —w
w wo wwo
_ (wo + w)(wo — )
wwo

Hence, if w = wy, we can put

wo w _ 2wolwo — w)  2(wo — w)
W wo wo?2 wo

Substituting this in the denominator of Eq. (4-23), we have

1Recall, for example, that cos? ot = 4(1 4 cos 2wf) and that (cos 2wl)ay = 0
over a complete cycle,
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Fig. 4-12 (a) Mean
power absorbed by a
Jorced oscillator as a
Junction of frequency
Jor different values of
Q. (b) Sharpness of
resonance curve de-
termined in terms of
power curve.
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Now we have met the quantity wo/Q before. It is the damping
constant ¥ (= b/m) which characterizes the rate at which the
energy of a damped oscillator was found to decay in the absence
of a driving force:

E = Epe™ %" = Eoe™ 4-25)

[see Eq. (3-36)]. Thus the above equation for P can be written
(remembering also that k = mwy?) in the following simplified

form:

YFo® 1

2m 4(wo — w)2 + Y2

(approximate) P(w) = 4-26)
The frequencies wo &= Aw at which P(w) falls to half of the maxi-
mum value P(w,) are thus defined by

4Aw)® =72

ie.,
wo
2Aw = — 4-27
w5 @-27)

Thus we find that the width of the resonance curve for the driven
oscillator, as measured by the power input [Fig. 4-12(b)], is equal
to the reciprocal of the time needed for the free oscillations to
decay to 1/e of their initial energy. We can thus predict that if a
system is observed to have a very narrow resonance response (as
measured either by amplitude or by power absorption), then the
decay of its free oscillations will be very slow. And conversely,
of course, an observation of whether the free oscillations decay
quickly or slowly will tell us whether the response of the driven
oscillator is broad or narrow. What is our criterion of “slow”
or “fast,” “broad” or “narrow”? Equations (4-26) and (4-27)
tell us the answer. We can say that the resonance is narrow if
the width is only a small fraction of the resonant frequency, i.e., if

240 «1 (4-28a)
wo

and we can say that the decay of free oscillations is slow if the
oscillator loses only a small fraction of its energy in one period
of oscillation. Now from Eq. (4-25) we have

AE
—E‘ = —Y At

If for At we put the time 27 /wg, which is approximately equal to
the period of the free damped oscillation [Eq. (3—40)], we have
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Thus a slow decay means

&1 (4-28b)

wo
Since ¥ = 2 Aw = wo/Q, the conditions described by Egs. (4-28a)
and (4-28b) can both be expressed by saying that the dimensionless
quantity Q must be large.

This relation between the resonance width of forced oscilla-
tion and the decrement of free oscillations is characteristic of a
wide variety of oscillatory physical systems, not only the mechani-
cal oscillator which we are here using as an example. In fact,
whenever such a physical system, in free oscillation, shows an
exponential loss of energy with time, it also displays a driven
response having resonance characteristics.

EXAMPLES OF RESONANCE

101

In the course of our discussions we have made passing references
to the fact that many systems which, on the face of it, have very
little in common with a mass on a spring, nevertheless exhibit a
similar resonance behavior. In concentrating on the behavior of a
simple mechanical system, however, our analysis became very
detailed and specific. Now we shall broaden our view again, and
say something about resonance in quite different systems.

If we are to extend our ideas in this way, we need to be able
to say in rather general terms what we mean by resonance, and
we can begin by asking ourselves: What is the real essence of the
behavior of the mass and spring system? And putting aside the
mathematics we can say this: The system is acted on by an ex-
ternal agency, one parameter of which (the frequency) is varied.
The response of the system, as measured by its amplitude and
phase, or by the power absorbed, undergoes rapid changes as the
frequency passes through a certain value. The form of the re-
sponse is described by two quantities—a frequency w, and a
width ¥ (= wo/Q)—which characterize the distinctive properties
of the driven system. Resonance is the phenomenon of driving
the system under such conditions that the interaction between
the driving agency and the system is maximized. Whatever the
particular criteria applied, one can say that the interaction has
its maximum at or near wg, and that its most marked changes

Examples of resonance



occur over a range of about &7 with respect to the maximum.

When we carry over these ideas to the resonance behavior
of other physical systems, we shall find that the quantities that
characterize a resonance are not always frequency, absorbed
power, and amplitude. This will appear in some of the examples
that we shall now discuss.

ELECTRICAL RESONANCE
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One of the most familiar and important resonant systems is the
electrical system made up of a capacitor and a coil, as shown in
Fig. 4-13. The analysis of such a system has a remarkable simi-
larity to the mechanical systems with which we have been con-
cerned so far. Let us consider first the free oscillations, ignoring
for the moment any dissipative process associated with the
electrical resistance. To begin with, we shall briefly describe the
essential electrical behavior of the individual components.

The capacitor is a device for storing electric charge and the
associated electrostatic potential energy. Its capacitance C is
defined as the measure of the charge g applied to the capacitor
plates divided by the measure of the voltage difference that this
charge produces:

=4

Ve
Therefore,

-4

Vo = ¢

The action of the coil requires a somewhat more detailed descrip-
tion. Under D-C conditions the coil offers no opposition to the
flow of current, but if the current is changing with time it is found
that the coil (which we shall henceforth call an inductor) acts to
oppose that change (Lenz’s law). Under these circumstances

i C
i
+q9  —q
Fig. 4-13 Capacitor and in- L
ductor in series: the basic elec- —Joo0

trical resonance system. i
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there is a voltage difference ¥, between the ends of the inductor,
and this voltage is proportional to the rate of change of the
current /. The inductance L is defined by the relation

di
Vi = Lgt-

This equation says that a voltage ¥ must be applied between
the ends of the inductor in order to make the current change at
the rate di/dt.

In a circuit made up of just these two components, the sum
of V¢ and ¥V, must be zero, because an imaginary journey through
the capacitor and then through the inductor brings us back to
the same point on the circuit. Thus we have

2+ L% =0 (4-29)

Now there is an intimate connection between g and /, because the
current in the circuit is just the rate of flow of charge past any
point. A current / flowing for a time df in the wire connected
to a capacitor plate will increase the charge on that plate by the
amount dq = idt, so we have

. _dq
i=—

dt
a _da

dt dre?

Hence Eq. (4-29) can be written
i

L
dr2

+ga=0 (4-30)
But this is precisely like the basic differential equation of SHM
for a mass-spring system, with g playing the role of x, L appearing
in the place of m, and 1/C replacing the spring constant k. We
can confidently assume the existence of free electrical oscillations
such that

.
T vIc
Now let us consider the effect of introducing a resistor, of
resistance R, as in Fig. 4-14(a). At current 7 it is necessary to
have a voltage Vr (= iR)applied between the ends of the resistor.
Thus the statement of zero net voltage drop in one complete tour
of the circuit is as follows:

Electrical resonance



Fig. 4-14 (a) Capacitor, in-
ductor, and resistor in series.
(b) Capacitor, inductor, and

resistor in series driven by a

sinusoidal voltage.

i, C
P

¥, cos wt

(a) (b)

9 e

C+1R+Ldt—0
ie.,

d2q dq 1

Lot Ry tci=0

or
2
Ly p—g=0 @-31)

In this equation, R/L plays exactly the role of the damping
constant ¥, and in such a circuit the charge on the capacitor
plates (and the voltage V¢) will undergo exponentially damped
harmonic oscillations.

Finally, if the circuit is driven by an alternating applied
voltage, we have a typical forced-oscillator equation:

2
g, Rdg , 1 ¥ )
dt2+Ldt+LCq_ LCOSwt 4-32)

Compare:

dx bdx k Fo
W—FEE-FEX—;COS(»I (4-33)

The connection between Egs. (4-32) and (4-33) becomes even
closer if one considers the energy of the system. Just as Fdx is
the amount of work done by the driving force Fin a displacement
dx, so V dq is the amount of work done by the driving voltage V
when an amount of charge dg passes through the circuit. One can
regard the oscillation as involving the periodic transfer of energy
between the capacitor and the inductor, with a continual dissipa-
tion of energy in the resistor. Comparison of the mechanical and
electrical equations suggests the classification of analogous quanti-
ties, as shown in Table 4-2.

We have discussed this phenomenon of electrical resonance
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TABLE 4-2: MECHANICAL AND ELECTRICAL RESONANCE

PARAMETERS
Mechanical system Electrical system

Displacement x Charge q
Driving force F Driving voltage V
Mass m Inductance L
Viscous force constant b Resistance R
Spring constant k& Reciprocal capacitance 1/C
Resonant frequency vk/m Resonant frequency 1/4/LC
Resonance width Y = b/m Resonance width Yy = R/L
Potential energy $kx? Energy of static charge $¢2/C
Kinetic energy Electromagnetic energy of moving

$m(dx/dD? = 3mv? charge 3L(dg/df)? = 3Li?
Power absorbed at resonance Power absorbed at resonance

Fo2/2b Vo2/2R

at some length because of its extremely close likeness to mechani-
cal resonance. Our other examples, although of great physical
importance, do not fall so completely into this pattern, and we
shall dispose of them more briefly.

OPTICAL RESONANCE

We have a great wealth of evidence that atoms behave like
sharply tuned oscillators in the processes of emitting and absorb-
ing light. Whenever the emission of light occurs under such
conditions that the radiating atoms are effectively isolated from
each other, as in a gas at low pressure, the spectrum consists of
discrete, very narrow lines; i.e., the radiated energy is concen-
trated at particular wavelengths. An incandescent solid—e.g.,
the filament of a light bulb—emits a continuous spectrum, but
the situation here is quite different, because each atom in a solid
is strongly linked to its neighbors, causing a drastic change in
the dynamical state of the electrons chiefly responsible for visible
or near-visible radiation.

We have just spoken of atoms as oscillators that emit their
characteristic frequencies. But how does this fit in with the
photon description of radiation, and with the picture of the
radiative process as one in which the atom undergoes a quantum
jump? The answer is by no means obvious. Before the advent
of quantum theory, one could visualize an electron describing a
circular orbit within an atom, and emitting light of a frequency
equal to its own orbital frequency. But now we can only say that
the frequency of the light is defined (through E = hv) by the
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Fig. 4-15 (a) Por-
tion of the solar spec-
trum, showing the
JSamous sodium D
lines at 5890 and
5896 A. (From F. A.
Jenkins and H. E.
White, Fundamentals
of Optics, McGraw-
Hill, New York,
1957.) (b) A qualita-
tive representation of
the intensity of the
solar spectrum as

a function of wave-
length, over the range
shown in (a).
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energy difference between two states of the atom; we can no
longer identify that frequency with a vibration of the atom itself.
Nevertheless the concept of the atom as an oscillator does in
some respects survive. If the emitted light is analyzed with an
interferometer, it is found to consist of wave trains of finite
length. The length of the wave trains, divided by ¢, defines a
time 7 which corresponds to the mean life of the radiating atoms
in their excited state, and the surplus energy of a collection of
excited atoms decays exponentially as e /7 (= e~ %) as the energy
is radiated away. Neither the photon picture nor the wave picture
alone tells us the whole story, but the model of the atom as a
damped oscillator provides an acceptable description of some
important aspects of the radiative process.

As we have seen, the concomitant of a natural frequency of
free oscillation is a resonance absorption at about that same
frequency. In the case of visible light the frequencies are too high
(= 10"® Hz) to be measurable, but we are able to describe both
emission and absorption in terms of characteristic wavelengths.
Probably the most famous example of resonance absorption for
light is provided by the Fraunhofer lines. These are the dark
lines that are observed in a spectrum analysis of the sun; they are
named after Joseph von Fraunhofer, who in a careful study
mapped 576 of them in 1814. Figure 4-15(a) shows a portion of

| SN — 1 LICE

A5850 5890 5896 A6000

(a)
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the solar spectrum; the prominent Fraunhofer lines at 5890 and
5896 A are due to sodium. Figure 4-15(b) shows qualitatively
what a plot of intensity versus wavelength looks like; the intensity
dips sharply at the wavelength of the Fraunhofer lines, but is not
zero. (It was not Fraunhofer who first observed the absorption
lines,! but it was he who first recognized that some of them
coincided in wavelength with bright emission lines produced by
laboratory sources. It remained, however, for Kirchhoff and
Bunsen in 1861 to make a detailed comparison of the solar
spectrum with the arc and spark spectra of pure elements.)

One can be sure that the Fraunhofer lines are the result of
resonance absorption processes. The picture is that the continuous
radiation from hot and relatively dense matter near the sun’s
surface is selectively filtered, as it passes outward, by atoms in
the more tenuous vapors of the solar atmosphere. It would be
satisfying if one could trace out the detailed shape of an optical
absorption line and relate its width to the characteristic time
(= 1/7) for the decay of the spontaneous emission. This, how-
ever, is extremely hard to do. The chief enemy is the Doppler
effect. Both direct and indirect evidence show that a typical life-
time for an excited atom emitting visible light is about 1078 sec,
so that 7 is about 108sec™). The angular frequency of the
emitted light, as defined by 2xc/), is about 4 X 105 sec™!. Thus
we can calculate a line width &\ as follows:

A\ Y 10% _8
N o we s axiom <~ 2X10

(Hence 8\ ~ 107*A for A ~ 5000 A.) But, unless special pre-
cautions are taken, the emitting atoms have random thermal
motions of several hundred meters per second, and we can esti-
mate a Doppler broadening of the spectral lines:

AN

=2=~10-6
A c

The Doppler effect is thus about 100 times greater than any effect
due to the true lifetime of the radiating atom. Interatomic colli-
sions also disturb the situation, so that the resonance shapes of
spectral lines are more a matter of inference than of direct spectro-
scopic observation.

IThey were first noted by W. H. Wollaston in 1802. By 1895 a classic study
by the American physicist H. A. Rowland had resulted in the mapping of

1100 of them. Today about 26,000 lines have been catalogued between 3000
and 13,000 A.
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Fig. 4-16 Yield of
gamma rays as a
Sfunction of the energy
of bombarding protons
in the reaction

p+ Y¥F—20Ne | 7.
[From data of R. G.
Herb, S. C. Snowden,
and O. Sala, Phys.
Rev., 75, 246 (1949).]
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NUCLEAR RESONANCE
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The literature of nuclear physics contains innumerable examples
of nuclear resonances; Fig. 4-16 shows one of them. This process
of nuclear resonance differs in several ways from anything we
have discussed so far. The subject of Fig. 4-16 is a nuclear re-
action; the graph shows the relative yield of gamma rays as a
target of fluorine is bombarded with protons of different energies
around 875 keV. But what is the resonant system? It is not the
bombarded fluorine but the compound nucleus—2°Ne in an
excited state, denoted 2°Ne*, formed when a fluorine nucleus
captures a proton. This compound nucleus is unstable, and one
of its decay modes is by emission of gamma rays. The complete
process can be written as follows:

1 19 20 * 20
1H+ 9F——»lONe ——»10Ne+’)’

(The subscript shows the number of protons in a nucleus, and
the superscript the total of protons plus neutrons.)

The controllable parameter—the independent variable of
the interaction—is not a frequency but the energy of the bom-
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barding proton. This defines a basic property of the resonance:
the total energy of the 2°Ne* in its rest frame. The response of
the system is measured, not in terms of amplitude or absorbed
power, but in terms of the probability that an incident proton
will cause a gamma ray to be produced. This probability can be
described in terms of the effective target area (or cross section, o)
that each fluorine nucleus presents to the incident proton beam.
Finally, the detailed shape of the resonance curve is very similar
in analytic form to the approximate form (for high Q) of the
absorbed power curve of a mechanical oscillator [Eq. (4-26) and
Fig. 4-12]. A nuclear resonance such as the one of Fig. 4-16 can
be well described by the equation
a(Eo)
o(E) = o — EP . iy
Iz
The energy E, then corresponds to the peak of the resonance
curve, and the total width of the curve at half-height is given
by I'. Defined in this way, the energy width T is strictly analogous
to the frequency width ¥ of a mechanical or electrical resonance.
The full curve in Fig, 4-16 is drawn according to Eq. (4-34) with
appropriate values of E, and T, and it can be seen that the fit to
the data is excellent.

(4-34)

NUCLEAR MAGNETIC RESONANCE

109

As a last example of resonance in other fields of physics, we shall
mention the resonant process by which atomic nuclei, behaving
as tiny magnets, can be flipped over in a magnetic field. It depends
upon a quantum phenomenon: that atomic magnets are limited
to having only a few discrete possible orientations with respect
to a magnetic field in a given direction. A proton, to take a
specific example, has only two possible orientations, one cor-
responding roughly to the north-seeking orientation of an ordi-
nary compass needle, and the other corresponding to the reverse
of this. There is a well-defined energy difference between these
orientations, corresponding to the work done against the mag-
netic forces in turning the nuclear magnet from one position to
the other. This energy difference is directly proportional to the
strength of the magnetic field in which the proton finds itself. If
photons of just the right energy come along, they can cause the
protons to switch from one orientation to the other. This can
be brought about by injecting electromagnetic radiation of just
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the right frequency; for protons in a field of about 5000 G the
resonance frequency is about 21 MHz. If all the protons in about
1 cm? of water are flipped in this way, they can be made to pro-
duce (through electromagnetic induction) a readily detectable
voltage in a pickup coil. If the magnetic field were held constant,
one would see this signal as a resonant function of the frequency
of the injected radiation. It is much more convenient, however, to
use a constant, sharply defined radiofrequency and vary the
strength of the applied magnetic field B. The magnitude of the
nuclear magnetic resonance signal can then be expressed as a
resonant function of the field strength:
Vo

4(Bo — B)?
—@Be +1
where B, is the field strength at exact resonance and AB is the
width of the resonance at half-height.

For their quite independent research on this phenomenon,

V(B) = (4-35)

Fig. 4-17 Magnetic resonance line of
protons in water containing MnSQOy as a
paramagnetic catalyst and obtained from
that component of the nuclear induction
signal which corresponds to absorption.
The photograph is of the trace on a
cathode-ray oscillograph with the vertical
deflection arising from the rectified and
amplified signal and the horizontal deflection
corresponding to different values of the
constant field. From Nobel Lectures:
Physics (1942-1962), Elsevier, Amsterdam,
1964.

F. Bloch and E. M., Purcell shared the Nobel Prize in physics in
1952. Figure 4-17 comes from the Nobel lecture that Bloch gave
at that time.

ANHARMONIC OSCILLATORS

So far this chapter reads altogether too much like a success story.
Everything works. We write down a differential equation and
obtain in every case an analytic solution that fits it exactly. We
point to actual physical systems that apparently conform perfectly
to our very simple mathematical model. Is nature really so
accommodating? The answer is that in certain cases—numerous
and varied enough to be of great physical importance—a system
can indeed be represented, with impressive accuracy, as a damped
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oscillator with a restoring force proportional to the displacement
and a resistive force proportional to the velocity. But this is an
astonishing stroke of luck, and we have in fact been treading a
very narrow path. To appreciate just how special and favorable
are the situations that we have discussed, we shall glance briefly
at the effect of modifying the equations of motion.

Our original equation for the free oscillation of a mass on a
spring without damping was the following:

d’x

F = m—dt—2' = —kx
This holds if the spring obeys a linear relation (Hooke’s law) for
any amount of extension or compression. But no real spring
behaves quite like this. With many springs it takes a slightly
different size of force to produce a given extension than to produce
an equal compression. The simplest asymmetry of this kind is
represented by a term in F proportional to x2. Or it may be that
the spring is symmetrical with respect to positive and negative
displacements, but that there is not strict proportionality of F
to x. The simplest symmetrical effect of this kind is described by a
term in F proportional to x3. The equations of motion for these
cases can be written as follows:

2

Nonlinear, asymmetric: mfiT: + kx + ax’ =0 (4-36a)
. . d2x 3
Nonlinear, symmetric: m 7l +kx+B8x =0 (4-36b)

If we try a solution of the form x = A cos wet in either of the
above equations we find at once that it does not work; the motion
is no longer describable as a harmonic vibration at some unique
frequency wo. We have instead what is called an anharmonic
oscillator. The motion is still periodic, in that (assuming no
damping) a given state of the motion recurs at equal intervals
T = 2n/w,, but instead of having x = A4 cos wet we find that
an infinite set of harmonics of wg is now needed to describe the
motion; i.e., we must put

-]
X = Z Ay cos(nwot — 8,)
n=1

in order to have a form of x that will satisfy the differential
equations,

In similar fashion, a resistive force varying as vZ or v3, in-
stead of v, makes impossible a clean, simple analytic description
of the motion of a damped oscillator.

Anharmonic oscillators
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What happens if an oscillator with nonlinear terms (in
restoring force, damping force, or both) is subjected to a sinusoi-
dal driving force? We shall not try to spell out the answer but
leave it as a challenge for your spare moments. Take, for example,
an oscillator whose free oscillations are described by Eq. (4-36a)
with a pure viscous force (~dx/dt) added, and assume a driving
force F = Fycos wt. Assume ax? < kx, put k/m = wo?, and
see if you can determine the frequency or frequencies w for which
the system exhibits resonance behavior. After investigating this
problem you will realize that the simple harmonic oscillator is
well named, and you will appreciate why a physicist will use it as
a model of a vibratory system if it can possibly be justified.

4-1 Construct a table, covering as wide a range as possible, of res-
onant systems occurring in nature. Indicate the order of magnitude
of (a) the physical size of each system, and (b) its resonant frequency.

4-2 Consider how to solve the steady-state motion of a forced oscil-
lator if the driving force is of the form F = Fgsinwt instead of
Fo cos wt.

4-3 An object of mass 0.2 kg is hung from a spring whose spring
constant is 80 N/m. The body is subject to a resistive force given by
—bv, where v is its velocity (m/sec) and b = 4 N-m™! sec.

(a) Set up the differential equation of motion for free oscillations
of the system, and find the period of such oscillations.

(b) The object is subjected to a sinusoidal driving force given by
F(t) = Fosinwt, where Fo = 2N and @ = 30 sec™!. In the steady
state, what is the amplitude of the forced oscillation ?

4-4 A block of mass m is connected to a spring, the other end of
which is fixed. There is also a viscous damping mechanism. The fol-
lowing observations have been made on this system:

(1) If the block is pushed horizontally with a force equal to mg,
the static compression of the spring is equal to A.

(2) The viscous resistive force is equal to mg if the block moves
with a certain known speed «.

(a) For this complete system (including both spring and damper)
write the differential equation governing horizontal oscillations of the
mass in terms of m, g, 4, and «.

Answer the following for the case that u = 3V/gh:

(b) What is the angular frequency of the damped oscillations ?

(c) After what time, expressed as a multiple of v/A/g, is the
energy down by a factor 1/e?

Forced vibrations and resonance
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(d) What is the Q of this oscillator ?

(e) This oscillator, initially in its rest position, is suddenly set
into motion at ¢t = 0 by a bullet of negligible mass but nonnegligible
momentum traveling in the positive x direction. Find the value of
the phase angle & in the equation x = Ae~7!/2 cos(wt — &) that
describes the subsequent motion, and sketch x versus ¢ for the first
few cycles.

(f) If the oscillator is driven with a force mg cos wt, where
w = 4/2g/h, what is the amplitude of the steady-state response?

4-5 A simple pendulum has a length (/) of 1 m. In free vibration the
amplitude of its swings falls off by a factor e in 50 swings. The pendu-
lum is set into forced vibration by moving its point of suspension
horizontally in SHM with an amplitude of 1 mm.

(a) Show that if the horizontal displacement of the pendulum
bob is x, and the horizontal displacement of the support is £, the
equation of motion of the bob for small oscillations is
d’x

darz
Solve this equation for steady-state motion, if £ = £ocos wr. (Put
wo? = g/1)

(b) At exact resonance, what is the amplitude of the motion of
the pendulum bob? (First, use the given information to find Q.)

(c) At what angular frequencies is the amplitude half of its
resonant value?

dx g _ £
tryatir=at

4-6 Imagine a simple seismograph consisting of a mass M hung
from a spring on a rigid framework attached to the earth, as shown.
The spring force and the damping force depend on the displacement
and velocity relative to the earth’s surface, but the dynamically sig-
nificant acceleration is the acceleration of M relative to the fixed stars.

(a) Using y to denote the displacement of M relative to the earth
and 7 to denote the displacement of the earth’s surface itself, show
that the equation of motion is

d’y dy 2 dn
ae TV gt e "4

(b) Solve for y (steady-state vibration) if = C cos wt.

(c) Sketch a graph of the amplitude 4 of the displacement y as a
function of w (supposing C the same for all w).

(d) A typical long-period seismometer has a period of about
30sec and a @ of about 2. As the result of a violent earthquake the
earth’s surface may oscillate with a period of about 20 min and with
an amplitude such that the maximum accelerationisabout 10™9 m/sec2.
How small a value of 4 must be observable if this is to be detected ?

4-7 Consider a system with a damping force undergoing forced
oscillations at an angular frequency w.
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(a) What is the instantaneous kinetic energy of the system?

(b) What is the instantaneous potential energy of the system?

() What is the ratio of the average kinetic energy to the average
potential energy? Express the answer in terms of the ratio w/wo.

(d) For what value(s) of w are the average kinetic energy and the
average potential energy equal? What is the total energy of the system
under these conditions?

(e) How does the total energy of the system vary with time for
an arbitrary value of w? For what value(s) of w is the total energy
constant in time?

4-8 A mass m is subject to a resistive force —bv but no springlike
restoring force.
(a) Show that its displacement as a function of time is of the form

D0 —nt
x=C——e
4

where Y = b/m.

(b) At ¢t = 0 the mass is at rest at x = 0. At this instant a
driving force F = Fg cos wt is switched on. Find the values of 4 and
é in the steady-state solution x = A4 cos(wt — §).

(c) Write down the general solution [the sum of parts (2) and
(b)] and find the values of C and v¢ from the conditions that x = 0
and dx/dr = 0 at ¢t = 0. Sketch x as a function of ¢.

4-9 (a) A forced damped oscillator of mass m has a displacement
varying with time given by x = A sin wt. The resistive force is —bv.
From this information calculate how much work is done against the
resistive force during one cycle of oscillation.

(b) For a driving frequency w less than the natural frequency wo,
sketch graphs of potential energy, kinetic energy, and total energy
for the oscillator over one complete cycle. Be sure to label important
turning points and intersections with their values of energy and time.

4-10 The power input to maintain forced vibrations can be calculated
by recognizing that this power is the mean rate of doing work against
the resistive force —bv.

(a) Satisfy yourself that the instantaneous rate of doing work
against this force is equal to hv2.

(b) Using x = A cos(wt — §), show that the mean rate of doing
work is bw2A42/2.

(c) Substitute the value of 4 at any arbitrary frequency and
hence obtain the expression for P as given in Eq. (4-23).

4-11 Consider a damped oscillator with m = 0.2kg, b = 4 N-m~!sec
and k = 80 N/m. Suppose that this oscillator is driven by a force
F = Fg cos wt, where Fo = 2N and w = 30sec™!.

(a) What are the values 4 and & of the steady-state response
described by x = A cos(wt — 6)?

Forced vibrations and resonance



(b) How much energy is dissipated against the resistive force in
one cycle?
(c) What is the mean power input?

4-12 An object of mass 2 kg hangs from a spring of negligible mass.
The spring is extended by 2.5 cm when the object is attached. The
top end of the spring is oscillated up and down in SHM with an ampli-
tude of 1 mm. The Q of the system is 15.

(a) What is wo for this system?

(b) What is the amplitude of forced oscillation at w = wg?

(c) What is the mean power input to maintain the forced oscilla-
tion at a frequency 2% greater than wg? [Use of the approximate
formula, Eq. (4-26), is justified.]

100
80
60

40

Input power, watts

20

0 36 38 40 42 44 46
o (sec™!)
4-13 The graph shows the power resonance curve of a certain mechani-
cal system when driven by a force Fy sin wt, where Fo = constant and
w is variable.

(a) Find the numerical values of wo and Q for this system.

(b) The driving force is turned off. After how many cycles of
free oscillation is the energy of the system down to 1/e3 of its initial
value? (e = 2.718.) (To a good approximation, the period of free
oscillation can be set equal to 27 /w¢.)

4-14 The figure shows the mean power input P as a function of driving
frequency for a mass on a spring with damping. (Driving force =

P, F—————————=
I
- I
[ |
E |
o |
a |
R |
> 1
g- EP m JI
c |
3 |
s [
= }
|
|
1

0.98w, w, 1.020,
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Fo sin wt, where Fo is held constant and w is varied.) The Q is high
enough so that the mean power input, which is maximum at wo, falls
to half-maximum at the frequencies 0.98wo and 1.02wo.

(a) What is the numerical value of Q?

(b) Ifthe driving force is removed, the energy decreases according
to the equation

E= Ege "

What is the value of v ?

(c) If the driving force is removed, what fraction of the energy
is lost per cycle?

A new system is made in which the spring constant is doubled,
but the mass and viscous medium are unchanged, and the same driving
force Fosin wt is applied. In terms of the corresponding quantities
for the original system, find the values of the following:

(d) The new resonant frequency wo'.

(e) The new quality factor Q'.

(f) The maximum mean power input Pr’.

(2) The total energy of the system at resonance, Eg’.

4-15 The free oscillations of a mechanical system are observed to have
a certain angular frequency wi. The same system, when driven by a
force Fgcos wt (where Fo = const. and w is variable), has a power
resonance curve whose angular frequency width, at half-maximum
power, is w1/S.

(a) At what angular frequency does the maximum power input
occur?

(b) What is the Q of the system?

(c) The system consists of a mass m on a spring of spring constant
k. In terms of m and k, what is the value of the constant b in the
resistive term —bv?

(d) Sketch the amplitude response curve, marking a few char-
acteristic points on the curve,

4-16 For the electrical system in the figure, find

1, COS wt
(a) The resonant frequency, wo. —
(b) The resonance width, 7.
(c) The power absorbed at resonance. R

p—

4-17 The graph shows the mean power absorbed by an oscillator when
driven by a force of constant magnitude but variable angular fre-
quency .

(a) At exact resonance, how much work per cycle is being done
against the resistive force? (Period = 27/w.)

Forced vibrations and resonance
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x 108 x 10° (sec™!)

(b) At exact resonance, what is the foral mechanical energy Eo

of the oscillator ?
(c) If the driving force is turned off, how many seconds does it

take before the energy decreases to a value E = Ege~1?
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The question of the vibration of connected particles is a
peculiarly interesting and important problem . . . it is going
to have many applications.

LORD KELVIN, Baltimore Lectures (1884)
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Coupled
oscillators and
normal modes'

THROUGHOUT THE PRECEDING TWO CHAPTERS we have confined
our analysis to systems having only one type of free vibration,
and characterized by a single natural frequency. A real physical
system, however, is usually capable of vibrating in many different
ways, and may resonate to many different frequencies—like a
sort of grand piano. We speak of these various characteristic
vibrations as modes, or, for reasons that will emerge later, as
normal modes of the system. A simple example is a flexible chain
suspended from one end. It is found that there is a whole suc-
cession of frequencies at which every point on the chain vibrates
in SHM at the same frequency, so that the shape of the chain
remains constant in the sense that the displacements of the various
parts always preserve fixed ratios. The first three modes (in
ascending order of frequency) for such a chain are shown in
Fig. 5-1. This is in effect only a one-dimensional object, and the
variety of natural modes of oscillation for two- and three-
dimensional objects is still greater.

IThis whole chapter may be bypassed if it is preferred to proceed directly to
the discussion of vibrations and waves in effectively continuous media. On
the other hand, an acquaintance with the contents of the present chapter, even
in rather general terms, may help in appreciating the sequel, for the many-
particle system does provide the natural link between the single oscillator

and the continuum. And it is not as mathematically formidable as it may
appear at first sight.
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Fig. 5-1 First three normal modes of vertical chain
with upper end fixed. (The tension is provided at each
point by the weight of the chain below that point and so
increases linearly with distance from the bottom.)

How do we go about the job of accounting for these numer-
ous modes and calculating their frequencies? The clue to this
question lies in the fact that an extended object can be regarded
as a large number of simple oscillators coupled together. A solid
body, for example, is composed of many atoms or molecules.
Every atom may behave as an oscillator, vibrating about an
equilibrium position. But the motion of each atom affects its
neighbors so that, in effect, all the atoms of the solid are coupled
together. The question then becomes: How does the coupling
affect the behavior of the individual oscillators?

We shall begin by discussing in some detail the properties of
a system of just two coupled oscillators. The change from one
oscillator to two may seem rather trivial, but this new system has
some novel and surprising features. Moreover, in analyzing its
behavior we shall develop essentially all the theoretical tools we
need to handle the problem of an arbitrarily large number of
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coupled oscillators—which will be our ultimate concern. And
this means that, from quite simple beginnings, we can end up
with a significant insight into the dynamical properties of some-
thing as complicated as a crystal lattice. That is no small achieve-
ment, and it is worth the little extra amount of mathematical
effort that our discussion will entail.

TWO COUPLED PENDULUMS

Fig. 5-2 (a) Coupled
pendulums in equilib-
rium position.

(b) Coupled pendu-
lums with one pendu-
Ium displaced.
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Let us begin with a very simple example. Take two identical
pendulums, 4 and B, and connect them with a spring whose
relaxed length is exactly equal to the distance between the pendu-
lum bobs, as shown in Fig. 5-2. Draw pendulum A4 aside while
holding B fixed and then release both of them. What happens?
Pendulum A4 swings from side to side, but its amplitude of
oscillation continuously decreases. Pendulum B, initially undis-
placed, gradually begins to oscillate and its amplitude continu-
ously increases. Soon, 4 and B have equal amplitudes. You
might think that now there would be no further change. But no,
the process continues. The amplitude of 4 continues to decrease
and that of B to increase until eventually the displacement of B
is equal (or about equal) to that originally given to A, and the
displacement of 4 diminishes toward zero. The starting condition
is almost reversed. Now it is easy to predict the sequel. The
motion of B is transferred back to A, and so it continues. The
energy, originally given to 4 (and to the spring), does not remain
confined to the oscillation of A4, but is transferred gradually to B
and continues to shuttle back and forth between 4 and B. Fig-
ure 5-3 shows records of actual motions of such a coupled system.
The pendulums, whose bobs were dry cells with flashlight bulbs
attached, were suspended from the ceiling and were photographed
from below by a camera that was pulled steadily along the floor.

Two coupled pendulums



Fig. 5-3 Motion of
two identical coupled
oscillators (pendulums
with flashlight bulbs
on the bobs). Pen-
dulum no. 1 was ini-
tially at rest at its
normal equilibrium
position. The damp-
ing of the system is
quite noticeable.
(Photo by Jon Rosen-
feld, Education Re-
search Center, M.1.T.)

N Rﬂl\,\n

““ V
'AV“V“'UU
! AAﬁnA

h 1 A Ty
lJ/\/\/\/\/V\IV,yV.VV/\/\/\/\/V\/\/V'VV\/

Of course, it is the coupling spring that is responsible for

‘ v

the observed behavior. As A oscillates, the spring pulls and
pushes on B. It provides a driving force that works on B and
sets it into motion. At the same time, the spring pulls and
pushes on A4, sometimes helping, sometimes hindering its motion.
But as B begins to move, the action of the spring on A4 is more to
hinder than to help. The net work done on A4 during one oscilla-
tion is negative, and the amplitude of 4 decreases.

Each of the motions recorded in Fig. 5-3 looks just like a
case of beats between two SHM’s of the same amplitude but
different frequencies. And that is precisely what they are. To
account for them in detail is not, however, an obvious matter:
Our “feeling” for the physical phenomenon helps us here only
qualitatively. But the problem becomes exceedingly simple if
we alter the starting conditions somewhat.

SYMMETRY CONSIDERATIONS
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Suppose we draw both 4 and B aside by equal amounts [Fig.
5-4(a)] and then release them. The distance between them equals
the relaxed length of the coupling spring and therefore the spring
exerts no force on either pendulum. A and B will oscillate in
phase and with equal amplitudes, always maintaining the same
separation. Each pendulum might just as well be free (uncoupled).
Each oscillates with its free natural frequency wo (= Vg/l).
The equations of motion are
x4 = Ccoswot -1)
xp = C cos wot
where x4 and xg are the displacements of each pendulum from
its equilibrium position. This represents a normal mode of the

Coupled oscillators and normal modes



Fig. 5-4 (a) Lower
normal mode of two
coupled pendulums,
(b) Higher normal
mode of two coupled
pendulums.
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coupled system. Both masses vibrate at the same frequency and
each has a constant amplitude (the same for both).

How many normal modes can we find? There is only one
other. Draw A and B aside by equal amounts but in opposite
directions [Fig. 5-4(b)] and then release them. Now, the coupling
spring is stretched; a half-cycle later it will be compressed, and
it does exert forces. The symmetry of the arrangement tells us
that the motions of 4 and B will be mirror images of each other.

If the pendulums were free and either one were displaced a
small distance x, the restoring force would be mwoZx. But in
the present situation the coupling spring is stretched (or com-
pressed) a distance 2x and exerts a restoring force of 2kx, where
k is the spring constant. Thus the equation of motion for 4 is

d’x
mT; + mwozxA + 2kx, =0
or
dx4 2 502, — 0
dl-z + (wo" + 2w )xa =

where we have let w.2 = k/m. This is an equation for simple
harmonic motion of frequency ' given by

1/2
o = (wo® + 20.)"% = (5 + %>

l{ m

For the given starting conditions, its solution is

xa = Dcosw't (5-2a)
The motion of B is the mirror image of 4, and therefore

xp = —Dcosw't (5-2b)

Each pendulum oscillates with simple harmonic motion, but the

Symmetry considerations



action of the coupling spring has been to increase the restoring
force and therefore to increase the frequency over that of the
uncoupled oscillation. The motions of 4 and B are clearly always
180° out of phase in this type of oscillation, which constitutes the
second normal mode.

It is perhaps worth pointing out that if either of the pen-
dulums is clamped, the angular frequency of the other, under
the action of the gravity plus the coupling spring, is equal to
@o? + w.2)Y2. Thus if one chooses to regard this motion as
being, in a sense, the motion characteristic of one pendulum
alone, the normal modes have frequencies that are displaced
above or below the single-pendulum value.

THE SUPERPOSITION OF THE NORMAL MODES

In both the above cases, the motion once begun will, in the
absence of damping forces, continue without change. No transfer
of energy occurs from some one mode of oscillation to another.
An important reason for introducing these two easily solved
cases is that any motion of the pendulums, in which each starts
from rest, can be described as a combination of these two. Let
us see how that can be done.

Take an arbitrary moment when pendulum A4 is at x4 and
pendulum B at xp (Fig. 5-5). The spring is stretched an amount
xa — xp and therefore pulls on 4 and B with a force whose
magnitude is k(x4 — xg). Thus the magnitude of the restoring
force on 4 is

mwo2xa + k(xa — xg)
and on Bitis

mwo2xp — k(xa — xg)

e

\??‘Jb?
Fig. 5-5 Coupled
pendulums in arbitrary Ly, .
configuration. i
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Therefore, the equations of motion for 4 and B are

2
dXA

m-—e + mwo’xa + k(xs — xg) =0

2 (5-3)

d"x
'"TzB + mwo2x1; — k(xa—x)=0
Again letting w,2 = k/m, we can write these as follows:
d2x,1 2 2 2
e + (Wo" + we )xa — woxp =0
5-4)

d2XB

dr2
The first equation, describing the acceleration of A, contains a
term in xp. And the second equation contains a term in xg4.
These two differential equations cannot be solved independently
but must be solved simultaneously. A motion given to 4 does
not stay confined to A4 but affects B, and vice versa.

Actually, these equations are not difficult to solve. If we add
the two together, we get

2

5,—2 (xa + x3) + wo’(xa + xg) =0

+ (@0 + we)xp — W xa =0

and if we subtract the second equation from the first, we get
2
-
These are familiar equations for simple harmonic oscillations.
In the first, the variable is x, + xp and the frequency is wo. In
the second, the variable is x4, — xp and the frequency is w’ =
(wo? + 2w,2)V2, These two frequencies correspond precisely
to those of the two normal modes that we identified previously.
If we let x4 + xp = ¢q; and x4 — xp = g3, we have two inde-
pendent equations in ¢; and gs:

(x4 — x5) + (wo + 207)(xa — x5) = 0

dar 3 o
e + wo'q1 =
d
e+ e =0
Possible solutions (although not the most general ones) are
= Ccoswot
(special case) 7 0 (5-5)
g2 = Dcosw't

where C and D are constants which depend upon the initial condi-
tions. [The lack of generality in Eqs. (5-5) can be recognized in
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the fact that we have set the initial phases equal to zero.]

We have here two independent oscillations. They represent
another description of the normal modes, as represented by
oscillations of the variables ¢, and g, respectively, and these
variables are consequently called normal coordinates. Changes
in the value of ¢, occur independently of g, and vice versa.

In terms of our original coordinates, x4 and xp, the solu-
tions are

= 3(g1 + g2) = 3Ccoswot + }D cos w't

special case
Gp ) xp = ¥(@1 — q2) = 3C cos wot — $D cos 't

(5-6)

If C = 0, both pendulums oscillate with the frequency o’,
or if D = 0, with the frequency w,. These are the frequencies of
the individual normal modes and are called normal frequencies.
We see that a characteristic of a normal frequency is that both
x4 and xp can oscillate with that frequency.

Let us now apply Egs. (5-6) to the analysis of the coupled
motion shown in Fig. 5-3. The initial conditions (at ¢z = 0)
are as follows:

dx dx
x4 = Ao d—t"=o xg =0 —d;”-=0

It may be noted that the conditions on the initial velocities are
automatically met by Eqs. (5-6), because differentiation with
respect to ¢ gives us terms in sin wof and sin w’z only, all of which
go to zero at 1 = 0. From the conditions on the initial displace-
ments themselves we have

x4 = Ao =3C + 3D
x5=0 =31C—1D
Therefore,
C= Ay D = Ao

Hence with these particular starting conditions we have, by
substitution back into equations (5-6), the following results:

xa = 2Ao(cos wot + cos w'p)
xp = $Ao(cos wot — cos w't)

which can be rewritten as follows:

w — wo o 4+ wo
Ap cos < 2 I> cos < 2 t>
Ao sin W — o t ) sin o + wo t &
0 2 2

Coupled oscillators and normal modes
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Each of these is a sinusoidal oscillation of angular frequency
(v’ + wo)/2, modulated in amplitude in the way discussed in
Chapter 2. The amplitude associated with each of the pendulums
is zero at the instant when the amplitude associated with the
other is a maximum—although the actual displacement of the
Iatter at any such instant depends on the instantaneous value
of (o' + we)t/2.

OTHER EXAMPLES OF COUPLED OSCILLATORS

There are many different ways of coupling two pendulums or
other oscillators together; let us consider a few.

In Fig. 5-6 we show how two pendulums may be coupled
through an auxiliary mass, m << M, connected by strings to the
major suspending wires. From the symmetry of the arrangement,
we can guess that the normal modes will be the motions for which
xp = +x,4. If x4 = +xp = q,, the mass m rises and falls with
the main masses M, but if x4 = —xp = ¢, the mass m will be
highest when the masses M are at their greatest separation, and
will fall as the masses approach each other. Thus there are two
distinct normal mode frequencies, neither of which (in general)
is equal to that of one pendulum alone.

Four other mechanical coupled systems are shown in Fig. 5-7.
The first diagram represents two pendulum bobs that are mounted
on rigid bars, the upper ends of which are clamped to a wire.
The pendulums swing in planes perpendicular to the wire. Unless
the pendulums swing in phase, with equal amplitudes, the con-
necting wire is twisted and provides a coupling torque that is
proportional to the difference of angular displacements.

In Fig. 5-7(b) we show another system in which the coupling
is provided by elastic restoring forces. Two small masses are
mounted at the ends of a hacksaw blade (or other strip of springy
metal) which is held at its center by a yielding support. If one

Fig. 5~6 Mass-coupled pen-
dulums.
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Fig. 5-7 (a) Rigid
pendulums coupled by
horizontal torsion rod,
(b) Masses at ends of
metal strip. (c) Wil-
berforce pendulum.
(d) Rectangular block
on springs.
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mass is pulled aside, as shown, and then released, the motion is
quickly transferred to the other mass through a typical super-
position of normal modes.

Figure 5-7(c) shows a curious device known as the Wilber-
force pendulum.! A mass with adjustable outriggers is suspended
from a coil spring. If the mass is pulled down and released, the
motion is at first a simple vertical oscillation, but as time goes on
this oscillation dies down and is replaced by a vigorous rotational
oscillation of the mass (about a vertical axis). Then the vertical
linear oscillation returns as the rotational oscillation again weak-
ens. It is important for the operation of this toy that the periods
of the two types of motion be nearly equal; the adjustable out-
riggers are there to permit this to be arranged. The coupling
between the linear and angular motions comes from the fact that,
as we mentioned in Chapter 3, when a coil spring is stretched its
end twists a little, or conversely that if it is twisted it tends to
lengthen or shorten. By pulling the mass down and twisting it
through an appropriate angle, it is possible to release the system
so that it oscillates in a normal mode with constant amplitude in
both components (linear and angular) of the motion.

INamed after L. R. Wilberforce, a British professor of physics, who published
a detailed study of it in 1894,

Coupled oscillators and normal modes



Our last diagram [Fig. 5-7(d)] represents a rectangular block
supported on two springs. One mode of this system is a vertical
oscillation in which the block remains horizontal and both springs
are equally stretched or compressed. But there is another mode
in which the springs undergo equal and opposite displacements;
the block then performs a twisting oscillation about a horizontal
axis, without any change in the height of its center of gravity. A
car resting on its front and rear suspensions has some resemblance
to this arrangement. If the front end were lifted and then released,
one might find the oscillation transferred to the rear at a later
time, if damping had not already brought the system to rest.

NORMAL FREQUENCIES: GENERAL ANALYTICAL APPROACH
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Suppose it were not easy to discover the normal modes from
symmetry considerations, or not easy to solve the simultaneous
differential equations. How then could we plough through to a
solution? We make use of the characteristic we discussed in
connection with Egs. (5-6). Both x4 and xp can oscillate with
one of the normal frequencies. Let us take, therefore,
x4 = Ccos wt
(5-8)
xp = C’ cos wt
and see if there are values of w and C and C’ for which these
expressions are solutions of equations (5-4):
d2x,1
dr?
d2x1;
dr?

+ (wo2 + wc2)x/1 — wlxp =0

2 2 2 -4
+ (wo + we )XB — we x4 =0

If there are suitable values of w, they will then be the normal
frequencies. Of course, we have already found that C and C’
must be equal in magnitude, but in our present approach to the
problem we shall act as though we do not know that yet. Be-
sides, the equality of C and C’ is true only in the very special
problem we have been considering and is not true in more gen-
eral cases.
Substituting equations (5-8) into equations (5-4), we get

(—w? + wo? + wA)C —w?C =0
= @02C + (—0? + wo? + wHC = 0

For an arbitrary value of w, these constitute two simultaneous

Normal frequencies: general analytical approach
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equations for the unknown amplitudes C and C’. If they are
independent equations, there is only one solution—C = 0,C’ = 0
—which simply means that, for an arbitrary value of w, equations
(5-8) are not a solution to the problem.

But if these two equations are not independent—i.e., if the
second is just a multiple of the first—then we have in effect only
one equation for the two amplitudes C and C’. In this case, C
can have any value. But once C is chosen, then C’ is fixed.

For what value of w are the two equations not independent
and thus able to yield nonzero solutions for C and C'? From
the first equation, we have

C we’
C' 7 —a? + wo? + w2 (5-5a)
and, from the second,
2 2 2
£ - © + w + w (5-9b)

c’ w2

If C and C’ are not both zero, the right-hand sides of those equa-
tions must be equal. Thus

2 2 2 2
We _ ~w + wo + w.
—w2 4 w2 + w2 we2
or
2 2 2.2 2.2
(0" 4+ wo” + o) = (w)
Hence

2 2 2 2
-0+ w + w, = *w,

2 2 2 2
0w = wo + w. *£ w.

We have two solutions for w; let us call them o’ and w’’:

w'? = wo? + 2w,

w2 = wo?

The positive square roots of these expressions are the two normal
frequencies of the system; once again we have arrived at the now
familiar results.

We can now get the relation between C and C’ for each of
the normal modes, from equations (5-9). For v = o/,

9
c’

and, for v = w’,

= —1
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Thus we have arrived at two specific forms of equations (5-8)
which are solutions to the coupled differential equations of motion
[equations (5-4)]:

x4 = C cos wot x4 = Dcosw't

and 5-10
C cos wot XB —Dcos 't ( )

Xn

Since the magnitude of the amplitude is arbitrary and determined
only by the initial conditions, we have used two different symbols
(i.e., C and D) to denote the amplitudes associated with the
separate normal modes.

The differential equations are linear (only the first powers of
X4, XB, d°x4/dt?, and d*xp/dt? appear), and therefore the sum
of the two solutions is also a solution:

= Ccoswot + Dcosw't

. XA
special case 5-11
Gp ) xp = Ccoswot ~ Dcosw't ( )

Once again we have obtained the solutions previously given by
equations (5-6).' But this time our approach has been purely
analytical and general, with no prior appeal to the symmetry
of the system.

Let us complete this discussion by giving the general solution
to the equations of free oscillation of this coupled system. It may
be readily seen that the differential equations (5-4) are equally
well fitted by assuming solutions with nonzero initial phases,
although there is a systematic phase relationship between x4
and xp in a particular mode. Specifically, instead of equations
(5-10) we may in general have the following:

x4 = Ccos(wot + a)

Lower mode:
xp = Ccos(wot + a)
(5-12)
Higher mode: X4 = Deos('r + )
xp = — D cos(w’'t + B)

The existence of four adjustable constants then allows us to fit
these solutions to arbitrary values of the initial displacements
and velocities of both pendulums. This removes the restriction

IThere is a factor of 2 lacking throughout in equations (5-10) as compared
with equations (5-6), but this makes no difference at all when one fixes the
values of the coefficients via the initial values of x4 and xp.
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to zero initial velocity that required us to label our earlier solu-
tions as special cases.

FORCED VIBRATION AND RESONANCE FOR TWO
COUPLED OSCILLATORS

132

So far we have merely considered the free vibrations of a system
of two coupled oscillators, thereby discovering the characteristic
natural frequencies (just two of them) at which the system is able
to vibrate as a kind of unit. But what happens if the system is
driven at an arbitrary frequency by an external agency? Our
intuition, backed up by actual experience, is that large amplitudes
of oscillation occur when the driving frequency is close to one of
the natural frequencies, whereas at frequencies far removed from
these the response of the driven system is relatively small. We
shall consider in detail how this emerges from the equations of
motion in the simplest possible case—for two coupled identical
pendulums with negligible damping, for which we have already
identified the normal modes.

Our discussion will closely parallel the analysis of the forced
single oscillator as in Chapter 4. Just as in that case, we shall
assume that the damping effects are small enough to be ignored
in the equations of motion, but that, nevertheless, perhaps after a
very large number of cycles of oscillation, the transient effects
have disappeared so that the motion of each pendulum occurs at
constant amplitude at the frequency of the driving force.

Let us suppose, then, that a harmonic driving force F cos wt
is applied to pendulum A (e.g., by moving its point of suspension
back and forth sinusoidally), the motion of pendulum B being
controlled only by its own restoring force and the coupling spring.
The statement of Newton’s law for pendulum B is thus just the
same as we had in considering the free vibrations, and the equa-
tion for A is modified only to the extent of adding the term
Fy cos wt—although this addition represents, of course, a major
change in the physical situation. Our two equations of motion
thus become the following [see equations (5-3) for the free-
vibration equations]:

2
m% -+ mwo2xA + k(x4 — xp) = Fopcoswt
m@+ wo2x ~ k(x4 — xg) =0 w? =2
a2 mwo XB A B) = 0 =7
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which, dividing through by m, become

dz—xA + (00" + @ )X4 — woxp = @cos wt
dr? m
2
d°x k
728 + (0" + 0 )X — wixq = 0 <wc2 = E)

Rather than dealing with x4 and xp separately, we shall proceed
at once to introduce the normal coordinates g, (= x4 + xp)
and g, (= x4 — xp), which, as we have seen, can be used to
characterize the motion of the system as a whole. Adding the
differential equations above, we get
2
% + wo2q1 = %COS wt (5-13a)

Subtracting them, we get

d2q2 2 _Fo
T + o'ge = oy COS @f (5-13b)

where

w'? = wo? + 20,2
The simplification of the problem is remarkable. It is just as
though we had two harmonic oscillators, of natural frequencies

wp and o’. We can clearly describe the steady-state solutions by
the equations

g1 = Ccoswr  where C = /M _
w2 — w2 )
(5-14
F
g2 = Dcoswt  where D = ,(’&
w2 — w2

The amplitudes C and D exhibit just the kind of resonance be-
havior shown for a single oscillator in Fig. 4-1. Having obtained
them, we can extract the frequency dependence of the individual
amplitudes 4 and B of the two pendulums, for we have

x4 = Acoswt  where A4 = 3(C + D)
Bcoswt  where B = 3(C — D)

XB
These give us the following results:

Fo (00 + o) — o
A(w) =— 7
m (wo2 — w2)(w'2 — w?2)

2 (5-15)
Fo o
m (w2 — w?)(@'2 — w?)
The variation of these quantities with v is shown in Fig. 5-8. In

the region of frequencies dominated by the lower resonance, the

B(w) =

Forced vibrations of two coupled oscillators



Fig. 5-8 Forced re-
sponse of two coupled
pendulums with neg-
ligible damping. The
normal modes have
the frequencies wo and
«'. (a) Amplitude of
first pendulum as a
JSunction of driving
frequency

[w1 = (wo? + «'2)V2].
(b) Amplitude of sec-
ond pendulum as a
JSunction of driving
Srequency.
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displacements of 4 and B are always of the same sign—i.e., in
phase with one another. In the region of frequencies dominated
by the higher resonance, the displacements are of opposite sign
and hence 180° out of phase. The introduction of nonzero damp-
ing would, as with the single driven oscillator, lead to a smooth
variation of phase with frequency as one goes through the
resonances.

One feature in particular of Fig. 5-8 might be commented
on, because it seems (and is) physically impossible. This is the
fact that at a certain frequency w, between the resonances, we have
A = 0 and B nonzero. Yet from the assumed conditions of the
problem it is clear that the periodic forcing of pendulum B de-
pends on the motion of pendulum 4. In any real system some
small oscillation of the bob of pendulum A would be essential.
The frequency w, at which the apparently anomalous situation
develops is precisely the natural frequency of a single pendulum,
with coupling spring attached, under the circumstance that the
other pendulum is held quite fixed—w; = (wo? + w.2)Y2 In
the complete absence of damping forces an arbitrarily small
driving force of frequency wj, caused by arbitrarily small vibra-
tions of pendulum A4, would cause an arbitrarily large response in

Coupled oscillators and normal modes



pendulum B. The existence of damping forces, however small,
would destroy this condition, and would mean that the amplitude
A(w), although becoming very small near w,, would never fall
quite to zero. The full description would now, however, necessi-
tate the detailed consideration of the system as a combination of a
pair of oscillators with damping, and the complexity of the
analysis would be greatly increased.

The main point to be learned from this analysis is the con-
firmation that one can trace out the normal modes of a coupled
system by means of resonance observations, and that the steady-
state motions of the component parts at resonance are just like
what they would be for the same system in free vibration at the
same frequency.

MANY COUPLED OSCILLATORS

Any real macroscopic body, such as a piece of solid, contains
many particles, not just two, so we have the strongest of motives
for tackling the problem of an arbitrary number of similar oscil-
lators coupled together. The work of the preceding sections has
equipped us to do this. Our investigation of such a system can
lead us to a description of the oscillations of a continuous medium,
and thence by an easy transition to the analysis of wave motions.

It would be possible for us to go directly from Newton’s
law to continuum mechanics.! But the route we have chosen,
via the modes of oscillation of coupled systems, is richer and in
essence is more correct—for there is no such thing as a truly
continuous medium. Moreover, you may be interested to know
that our present route is the one that Newton and his successors
themselves took. Perhaps this in itself merits an introductory
digression.

Not long after Newton, two members of the remarkable
Bernoulli family (John Bernoulli and his son Daniel) embarked
on a detailed study of the dynamics of a line of connected masses.
They showed that a system of N masses has exactly N independent
modes of vibration (for motion in one dimension only). Then in
1753 Daniel Bernoulli enunciated the superposition principle for
such a system—stating that the general motion of a vibrating
system is describable as a superposition of its normal modes.
(You will recall that earlier in this chapter we developed this

1As mentioned in the footnote at the beginning of this chapter, you can do
this by going directly to Chapter 6.
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result for the system of two oscillators.) In the words of Leon
Brillouin, who has been a major contributor to the theory of
crystal-lattice vibrations!:

This investigation by the Bernoullis may be said to form the be-
ginning of theoretical physics as distinct from mechanics, in the
sense that it is the first attempt to formulate laws for the motion
of a system of particles rather than for that of a single particle.
The principle of superposition is important, as it is a special case
of a Fourier series, and in time it was extended to become a
statement of Fourier’s theorem.

(We shall come to the notions of Fourier analysis in Chapter 6.)
After this preamble let us now turn to the detailed analysis
of an N-particle system.

N COUPLED OSCILLATORS

Fig. 5-9 N equi-
distant particles along
a massless string.

136

In our treatment of the motion of a two-oscillator system, we
confined our attention to oscillations which may be termed
longitudinal—the motions of the pendulum bobs have been along
the line connecting them. The treatment is quite similar, as we
shall soon see, for transverse oscillations where the particles
oscillate in a direction perpendicular to the line connecting them.
And because transverse oscillations are easier to visualize and
to display than longitudinal oscillations, we shall analyze the
transverse oscillations of a prototype system of many particles.

Consider a flexible elastic string to which are attached N
identical particles, each of mass m, equally spaced a distance /
apart. Let us hold the string fixed at two points, one at a distance
/ to the left of the first particle and the other at a distance / to the
right of the Nth particle (Fig. 5-9).

The particles are labeled from 1 to N, or from O to N + 1
if we include the two fixed ends and treat them as if they were
particles with zero displacement. If the initial tension in the
string is T and if we confine ourselves to small transverse displace-
ments of the particles, then we can ignore any increase in the
tension of the string as the particles oscillate. Suppose, for

Fixed _ _ _ R Fixed

c 1 2 3 N—1 N N+1

L. Brillouin, Wave Propagation in Periodic Structures, Dover, New York,
1953.
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Fig. 5-10 Force diagram for transversely displaced
masses on a long string.

example, that particle 1 is displaced to y; and particle 2 to y,
(Fig. 5-10); then the length of string between them becomes
I' = l/cos a;. For a; « 1 rad, then cosa; = 1 — «2/2 and
I" =~ I(1 + «,%/2). The increase in length is /x;2/2, and any
increased tension that is proportional to this may be ignored in
comparison to any term proportional to the first power of «.

In the configuration as shown the resultant x component of
force on particle 2 is —T cos a; + T cos ay = 3T(e;2 — ay?),
a difference between two second-power terms in «. For small
values of a; and ay, it is exceedingly small and we shall pay it
no attention in what follows.

Figure 5-10 shows a configuration of the particles at some
instant of time during their transverse motion. We shall restrict
ourselves to y displacements that are small compared to /. The
resultant y component of force on a typical particle, say the pth
particle, is

Fp, = —=Tsina,_1 + Tsina,

The approximate values of the sines are

sin@,—] = y,,_—[y,,__l
sin e, = y____p+11— Ve
Therefore,
F,= — ;(y,, - yp-1) + "71;(yp+1 = ¥p)

and this must equal the mass m times the transverse acceleration
of the pth particle. Thus
2
dyp

T T 200y — w0’ Opst + ypm1) = 0 (5-16)

where we have put
T 2

— = wy
ml

N coupled oscillators
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We can write a similar equation for each of the N particles.
Thus we have a set of N differential equations, one for each value
of p from 1 to N. Remember that yo = 0and yx4; = 0.

You may find it helpful to consider the simple special cases
of Eq. (5-16)for N = land N = 2. If N = 1, we have

d2y1 2

—dt_2_ + 2wo"y1 =0
There is transverse harmonic motion of angular frequency
woV'2 = (2T/mi)"2, as one can conclude directly from a con-
sideration of Fig. 5-11(a). If N = 2, we have

d*v1 2 2
—d,—2+2w0y1—w0y2=0
d’y2 2 2
—d,—2+2woy2—woy1=0

These are similar to Eqs. (5-4) for the two coupled pendulums,
but we now have the simplification that w, and w, are equal, so
that wo2 + w.2 in equations (5-4) corresponds to 2w ? here, and
w.? there becomes w,? here. The angular frequencies of the
normal modes in this case are in a definite numerical relationship;
their actual values are wo and wev/3. The modes for N = 2 are
illustrated in Figs. 5-11(b) and (c). The actual configuration of
the strings makes almost self-evident the relation between the
natural frequencies here, but as we go to larger numbers of
particles the results are far less obvious and we must resort to a
more general type of analysis.

n

| 1
1

PR PR

@ N-1(w o, \?)

Fig. 5-11 Normal (b) N — 2 Lower mode (w - w,)
modes of the two

simplest loaded-string
systems. (@) N = I,
one mode only.

(b)Y N = 2, lower
mode. (¢) N = 2,
higher mode. (c) N — 2 Higher mode (v wy \ 3)
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We apply basically the same analytical technique to our N differ-
ential equations as we previously used for the two equations.
We seek the normal modes; i.e., we look for sinusoidal solutions
such that each particle oscillates with the same frequency. We set

yp = Apcos wt r=12,...,N) 5-17)

where 4, and w are the amplitude and frequency of vibration of
the pth particle. If we can find values of 4, and w for which
equations (5-17) satisfy the N differential equations (5-16), then
we have accomplished our purpose. Note that the velocity of any
particle can be obtained from equations (5-17) and is

d .
—ay-tf= —wdysinet (p=1,2,...,N)

Thus, by choosing equations (5-17) as a trial solution, we are
automatically restricting ourselves to the additional boundary
condition that each particle has zero velocity at ¢ = 0; ie.,
each particle starts from rest.

Substituting equations (5-17) into the differential equations
(5-16), we get

(—w? + 2wo2)A1 — wo?(42 + 4p) = 0
(—w? + 2w02)A2 — wo?(As + 41) = 0

(—w? + 2004, — w2 (Apr1 + 4p—1) =0

(—w? + 2wo2)A4y — wo2(AN+1 — Ay_1) =0

This formidable-looking set of N simultaneous equations can
be written more compactly as follows:

(—w? + 2w0H)A4, — wo?(dp—1 + Apy1) = 0
(r=12,...,N) (5-18)

Our earlier boundary condition requiring the ends to be held
fixed means that 49 = Oand Ay, = 0.

The question we are asking ourselves is whether all N of
these equations can be satisfied by using the same value of w®
in each. We saw earlier how to tackle such a problem when only
two coupled oscillators were involved. The assumption that a
solution existed (other than the trivial one of having all ampli-
tudes equal to zero) led to restrictions on the ratios of the ampli-
tudes [as expressed by equations (5-9)]. We have the same situa-

Normal modes for N coupled oscillators
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tion in this more complex problem. If we rewrite equations (5-18)
as

2 2
Ap—l :‘ Ap+1 — w +22w0 (p = 1, 2, e, N) (5_19)
P wo

we see that, for any particular value of w, the right side is constant,
and therefore the ratio on the left must be a constant and inde-
pendent of the value of p. What values can be assigned to the
Ap’s such that this condition will be satisfied and at the same
time give 49 = Oand Ay, = 0?

We shall not pretend to solve Eq. (5-19) but will simply draw
attention to a remarkable result that gives the key to the problem.
Suppose that the amplitude of particle p is expressible in the form

A, = Csinpb (5-20)

where 6 is some angle. If a similar equation is used to define the
amplitudes of the adjacent particles p — 1 and p 4 1, we shall
have

Ap—1 4+ Apy1 = Clsin{p — 1)8 + sin(p + 1)6]
= 2Csin pf cos 0

But C sin p# is just 4, so that we have

Ap—1 + Appa

1 = 2cos @ (5-21)

This means that the recipe represented by Eq. (5-20) is successful.
The right-hand side of Eq. (5-21) is a constant, independent of p,
which is just what we need so as to have a condition equivalent
to Eq. (5-19). It can be used to satisfy all N of the equations
(5-18) from which we started. All that remains is to find the
value of 8. This we can do by imposing the requirement that
A, =0 for p =0 and p= N 4 1. The former condition is
automatically satisfied; the latter will hold good if (V 4+ 1)8 is
set equal to any integral multiple of =. Thus we put

(N4 1)0 = nr n=1,2,3...)

(5-22)
g =—"T
N4+1
Substituting for 8 in Eq. (5-20) we thus get
_ . pnw .
A,,-Csm(N+1) (5-23)

The permitted frequencies of the normal modes are also
determined, for from Eqgs. (5-19) through (5-22) we have

Coupled oscillators and normal modes
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A Ay —
o+l + Ap_1 “’+2“’°=2cos( mr)

A, - w02 N+1

Therefore,

2 _ .21 <= _nr
o = 2wo [l COS(N+ l)]

_ 2 .2 nw
= 4(.00 sin [—2(N+ 1)]

Taking the square root of this, we have

(5-24)

_, in[_ﬂ__]
@ = oSN IN T+ 1)

PROPERTIES OF THE NORMAL MODES FOR
N COUPLED OSCILLATORS
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Having obtained the mathematical solutions to this problem of
N coupled oscillators, let us look more closely at the motions
that the equations describe.

First, we observe that, according to Eq. (5-24), different
values of the integer # define different normal mode frequencies.
It is therefore appropriate to label a mode, and its distinctive
frequency, by the value of n. Thus we shall put

nmw
z<~—+1>] (5-25)

Next, we must recognize that the motion of a given particle
(or oscillator) depends both on its number along the line (p) and
on the mode number (#). The amplitude of its motion can thus
be written as follows:

Apn = Cn sin( PRT ) (5-26)

wp = 2w sin[

N+1

where C, defines the amplitude with which the particular mode »n
is excited. The actual displacement of the pth particle when the
entire collection of particles is oscillating in the nth mode is thus
given by

Yor(t) = Apn COS Wt (5-27)

where w, and 4,, are given by Eqs. (5-25) and (5-26), respec-
tively. The above equation implies that each particle is at rest at
the time ¢ = 0, but as with the two-oscillator problem we can
satisfy arbitrary initial conditions by putting

Properties of modes for N coupled oscillators



Fig. 5-12 Graph of
the mode frequency as
a function of mode
number. It is con-
venient to graph wn
against the quantity
nx/2(N + 1) rather
than against n itself.

(0] 37 2 2(N + 1)

Ypu() = Apn cos(wat — 8,) (5-27a)

where each different mode can be assigned its own phase §,,.

How many normal modes are there? We saw that with two
coupled oscillators there were just two normal modes. If your
intuition should tell you that with N oscillators there are only
N independent modes, you would be right.! This fact is, however,
somewhat hidden in Egs. (5-25) and (5-26), because values of
w, and A4,, are defined for every integral value of n. The point is,
though, that beyond # = N the equations do not describe any
physically new situations.

We can make this clear, as far as the mode frequencies are
concerned, with the help of Fig. 5-12. This is a graph of Eq. (5-25)
—modified to the extent that w is defined as being always positive.
As we go fromn = 1 ton = N we find N different characteristic
frequencies. At n = N + 1, which corresponds to =/2 on the
abscissa, a maximum frequency wp.x (= 2w,) is reached, but it
does not correspond to a possible motion because [as Eq. (5-26)
shows] all the amplitudes A4,,, are zero at this value of n. For
n = N + 2, we have

_ [V + 2)r]
wN+2 = 2wo Sin 2+ D,
P _IYL]
ST T AN D
- 2upsin| T |
o 2v + 1
Therefore,
WN42 = WN

Similarly, wy 3 = wwv—1, and so on. And a similar duplication
occurs in every subsequent range of N + 1 values of .

IThis is for a one-dimensional system. Two dimensions gives 2N, three
dimensions gives 3N.
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Fig. 5-13 (a) Plot
of sin [px/(N + D]
as a function of p.
The particles are at
the positions defined
by integral values of p
and are joined by
straight segments of
string. (b) Positions
of particles at various
times for lowest mode.
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It is only a short step to see that the relative amplitudes of
the particles in a normal mode repeat themselves also. Thus, for
example, we have, from Eq. (5-26),

N+1

ApNy2 Cn42 sin [

Cn42 sin [2p1r -

pN1r]
N+1

. pNm
Cn 42 sin (N T 1)

~ Apn

and it is easy to show that a similar matching occurs for any
othern > N 4 1.

Let us see what the various normal modes look like.
first mode is given by # = 1. The particle displacements are

The

¥p1 = Cjsin (NL_H>cosmt r=12,...,N)

At a given instant of time, the C; cos w;t factor is the same for
all particles. Only the sin[pr/(N + 1)] factor distinguishes the
displacements of the different particles. The white curve in
Fig. 5-13(a) is a plot of sin[pr/(N 4 1)] versus p, as p varies
continuously from 0 to N 4 1. Actual particles, however, are
located at the discrete values p = 1, 2, ..., N. The sine curve
is therefore only a guide for locating the particles, and the string
consists of straight-line segments connecting the particles.

As 1 increases, each particle oscillates in the y direction with

Properties of modes for N coupled oscillators
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Fig. 5-14 Positions of particles at various times for
second mode (n = 2).

frequency w;. A whole set of sine curves for different values of ¢,
and the corresponding locations of the particles, are shown in
Fig. 5-13(b). For the second mode, n = 2 and

. p2w
yp2=Czsln(N+l)COSw2t (r=12,...,N)

The particle displacements at different instants of time are shown
in Fig. 5-14. If the number of particles should happen to be
odd, there would be one particle at the center of the line and in
this mode it would remain at rest, as indicated in Fig. 5-14.
Remember that ws differs from w,, and therefore this pattern
oscillates with a different frequency than the previous one—
almost twice as great, in fact.

In Fig. 5-15 we show a set of diagrams of the normal modes
for a set of four particles on a stretched string. This displays very
beautifully how the pattern of displacements retraces its steps
after reaching n = 5, even though the sine curves that determine
the A4,, are all different. These sketches for a small value of N
also allow one to appreciate how remarkable it is that the dis-
placements of every particle in every mode for such a system
should fall upon a sine curve, when the string connecting them
may follow an entirely different path.

OSCILLATIONS

As we explained at the outset, we chose to consider transverse
vibrations, rather than longitudinal ones, as a basis for analyzing
the behavior of a system comprising a large number of coupled
oscillators. The eye and the brain can take in, at a glance, what
is happening to each and every particle when a string of masses
is set into transverse oscillations. But now let us see how the

Coupled oscillators and normal modes
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Fig. 5-15 Modes of weighted vibrating string, N = 4.
Note that n = 6, 7, 8, 9 repeat patterns of n = 4, 3,

2, 1 with opposite sign. (Adapted from J. C. Slater

and N. H. Frank, Mechanics, McGraw-Hill, New York,
1947.)

same kind of analysis applies to a system of particles connected
by springs along a straight line, and limited to motions along that
line. This may seem like a very artificial system, but a line of
atoms in a crystal is surprisingly well represented by such a model
~—and so, to a lesser extent, is a column of gas.

We shall again assume that the particles are of mass m and
when at rest are spaced by distances / [Fig. 5-16(a)]. But now
the restoring forces are provided by the stretching or compression

e

(@) 209™-*—2000000™*—0000000™*—770"

Fig. 5-16 (a) Spring-
coupled masses in

equilibrium.

(b) Spring-coupled (b) 2D ——2000000"—8— DDAV — T
masses after small ,J b »‘ ¢ ‘,4 £
longitudinal displace- &

ment.

145 Longitudinal oscillations



146

of the springs; the spring constant for each spring can be written
as mwy2. Let the displacements of the masses from their equi-
librium positions be denoted by £, £, . . ., &, [see Fig. 5-16(b)].
Then the equation of motion of the pth particle is as follows:

2

m7fz‘ = mwo’(Ep1 = £5) — mao’ (&, — £p1)
ie.,

4ty

o+ 20085 — w0 (b1 + §p-1) = 0 (5-28)

This has precisely the same form as Eq. (5-16), so we know that
mathematically all the features we have discovered for the trans-
verse vibrations of the loaded string have their counterparts in
this new system. That is to say, the motion of the pth particle in
the nth normal mode is given by

Epn(1) = C,sin (pr:rl) COS Wnt

where
(5-29)

nx ]
2N+ 1)

A very nice quantitative study of such systems has become
possible through the use of air suspensions, in which a flow of
air (at pressures just a little above atmospheric) from holes in a
bearing surface can be made to provide an almost completely
frictionless support for objects gliding over the surface. Fig-
ure 5-17 shows the results of measurements made with such an
apparatus.? The masses were each about 0.15 kg, and the spring
constants were such that the frequency w, was 5.68 sec™1,

The figure shows the observed frequencies v, (= wy/2r) of
the various normal modes, plotted as a function of the variable
n/(N + 1). The graph contains measurements made with a
system of 6 masses (and 7 springs) and with a longer but otherwise
similar system of 12 masses (and 13 springs). Since w, was the
same for both, the results for the two systems should fall upon
the single curve:

_9n_wo o ( n w
T x N+12

1We use the Greek letter £ so as to reserve the ordinary x for total distance
from one end.

w, = 2wo sin[

2R. B. Runk, J. L. Stull, and O. L. Anderson, Am. J. Phys., 31, 915 (1963).
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Fig, 5-17 Experi-
mental values of
mode frequency v,
Dlotted against mode
number for a line of
identical spring-
coupled masses.
[Note that abscissa is
n/(N + I, rather
than n; this allows
data for two different
valuesof N(N = 6
and N = 12) 1o be
fitted to same theo-
retical curve.] [From
R. B. Runk, J. L.
Stull, and O. L.
Anderson, Am. J.
Phys., 31, 915
(1963).1
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It may be seen that the experimental values conform extremely
well to the theoretical ones.

Suppose now that we allow the number of masses in a
coupled system to become very large. To make the discussion
explicit, we shall take the case of the transverse vibrations of
particles on a stretched string. A real string, just by itself, is in
fact already a collection of a large number of closely spaced
atoms. Once again we can be sure that our conclusions will
apply equally to the line of masses connected by springs in
longitudinal vibration.

We shall let & increase but, at the same time, let the spacing
I between neighboring particles decrease so that the length of
string, L = (N + 1)/, remains constant. We shall also decrease
the mass of each particle so that the total mass, M = Nm, also
remains constant.

What happens to the normal frequencies? We have found
that

= 20 sin nw
W, = Lwg Sl ——-—2(N+ l)

where wg = (T/ml)Y2. First, consider the normal modes for
which the mode number » is small. Then as N becomes very
large, we can put

N very large



. [ nmw ]~ nmw
SMON+ Ol T2+ 1

Therefore,

N2 T\Y2  r
o 2(F1) 2N+ D (m—/z) Y]
But (N 4+ 1)/ = L, the total length of the string, and m/! is the

mass per unit length (linear density) which we shall denote by p.
Thus, approximately,

(T 1/2
W, = n—(—) n=12,...) (5-30)
L\u

In particular,

_T(T\"
wr=7 u

and then w, = nw;. The normal frequencies are integral multiples
of the lowest frequency w;. Remember, however, that this is
only an approximation, even though for n << N it is an exceed-
ingly good one.

What about the particle displacements? Previously, we
found that, in the nth mode, the displacement of the pth particle is

Ypn = Cysin (prl) COS Wyt

Instead of denoting the particle by its p value, we can specify
its distance, x, from the fixed end of the string. Now

x = pl
Hence

pnm _ pihm nmx
N+1 N+ L
In place of y,,, we can write y,(x, r), by which we mean the
y displacement at the time 7 of the particle located at x, when the
string is vibrating in the nth mode. Thus

yalx, 1) = C, sin (%) coswat  (m=1,2,...) (5-31)

As N becomes very large, the x values, which locate the particles,
get closer and closer together and x can be taken as a continuous
variable going from 0 to L. The white sine curves of Figs. 5-13,
5-14, and 5-15 are now the actual configurations of the string
in its different modes. It does not take much imagination to
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Fig. 5-18 (a) Lon-
gitudinal vibrations in
the highest mode of a
line of spring-coupled
masses. (b) Trans-
verse vibrations in the
highest mode of a line
of masses on a
stretched string.
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connect such motions with the possibility of wave disturbances
traveling along the string, but we shall not proceed to that sub-
ject just yet.

Let us now consider the highest possible mode, n = N. If
N is very large, we have

. N=m .7
Wmax = 2w0 sin [m] = 2w0 sin (E) = 2w0 (5—32)

In this mode (as we shall show in a moment) each particle has,
at every instant, a displacement that is opposite in sign to the
displacements of its nearest neighbors, and—except for those
particles near to one or the other of the fixed ends—these dis-
placements are almost equal in magnitude. Thus for longitudinal
oscillations the situation is somewhat as indicated in Fig. 5-18(a),
and for the more readily visualizable case of transverse oscilla-
tions it is like Fig. 5-18(b).

This relationship of the adjacent displacements can be in-
ferred with the help of Eq. (5-26):

_ . pnt
Apn = Cysin (—N+ 1)

Putting » = N, we have

_ . pNw
A,,_N = Cysin (N+ 1)

which we can write as

Apn = Cnsin(pr — ap)

where
pr

N+1

Op =

First, note that in going from p to p + 1, the sign of the amplitude
is reversed, because the angle pr changes from an odd to an even
multiple of = (or vice versa) and the angle «, is less than = for

N very large
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Fig. 5-19 Amplitudes of a complete line of particles
in the highest mode for a string fixed at both ends.

every p (since p < N). This puts successive values of (pr — a;)
into opposite quadrants. Thus we can put

ol 2]
(highest mode, n = N) -Jz_ - _ (N +1 (5-33)
Ap+1 “in [(p + 1)1r]
il Y

Notice next that, apart from the alternation of sign, Eq. (5-33)
describes a distribution of amplitudes that fit on a half-sine curve
drawn between the two fixed ends, as shown in Fig. 5-19 for the
case of transverse vibrations of a line of masses.! Thus over
most of the central region of the line the displacements are almost
equal and opposite. Consider, for example, a line of 1000 masses.
Then for 100 < p < 900 the successive amplitudes differ by less
than 1. It is only toward the ends of the line that the appearance
differs markedly from Fig. 5-18(b). It is then easy to see why the
frequency should be nearly equal to 2w,. Consider the particle P
in Fig. 5-19. If its displacement at some instant is y, the displace-
ments of its neighbors are both approximately —y. Thus if the
tension in the connecting strings is T, the transverse component
of force due to each is approximately (2y//)T, and the equation
of motion of P is given by

d’y 2y
mﬁ —ZTT
or
dy 4T 2
az S T T ey

(Remember that the magnitudes of the transverse displacements
are grossly exaggerated in the diagrams; we really are supposing
y < I, as usual.) The above equation thus defines SHM of angular

INote that this result holds for the highest mode even for small N—see, for
example, the fourth diagram in Fig. 5-15.
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frequency 2wg approximately—and a little further consideration
will convince you that the exact frequency is a shade /ess than
2w, just as Eq. (5-32) requires.

In all of our discussion of normal modes up until now we
have, with good reason, laid great emphasis on the boundary
conditions that are applied—whether, for example, the ends of a
line of masses are fixed or free. It may, however, have become
apparent to you during this last discussion that the properties of
the very high modes of a line of very many particles depend
relatively little on the precise boundary conditions, even though
the low modes are critically dependent on them. Thus the above
calculation of the highest mode frequency of the system requires
only the realization that the displacements of successive particles
are approximately equal and opposite. We should have arrived
at the same approximate value of the highest mode frequency if
we had assumed that one end of the line was fixed and the other
end free. It should be realized, however, that this is only approxi-
mately true, and that the effect of the precise boundary conditions
must always in principle be considered.

NORMAL MODES OF A CRYSTAL LATTICE
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We shall not do more than touch on this subject, which, in fact,
requires whole books to do it justice. However, the analysis of
the previous section carries over in a very successful way to the
description of the vibrational modes of solids. This is not too
surprising, because, as we have remarked, the interaction between
adjacent atoms is, as far as small displacements are concerned,
remarkably like that of a spring. And the structure of a solid is a
lattice of greater or lesser regularity, justifying the frequently used
comparison of a crystal lattice to a three-dimensional bedspring
with respect to its vibrational behavior.

If we try to apply Egs. (5-29) and (5-30) to a solid, we can
think of a line of atoms along one of the principal directions in
the lattice, so that u is the total mass of all the atoms per unit
length, or the mass of one atom divided by the interatomic
separation, /. But what is the tension 7? In Chapter 3 we intro-
duced a strong hint for calculating the spring constant due to
internal elastic forces. Dimensionally, the ratio T/u is the same
as the ratio Y/p of the Young’s modulus to the density. The use
of this is suggested even more strongly when we think of stretched

Normal modes of a crystal lattice



springs as shown in Fig. 5-16. Thus we shall consider the possi-
bility of describing crystal vibration frequencies » (= w/27)
through the following relation:

1/2
Vo = 2vosin [ﬁ] where »o = 2—,(%) (5-34)
For solids, as we have seen (see Table 3-1), the values of Y

are of the order of 101! N/m2, so that, because the densities p are

of the order of 10% kg/m3, the ratio Y/p is of the order of

107 m2/sec?. The interatomic distance / is of the order of

107 19m. Thus we should have
vo =~ 1013 sec—1

This is the highest frequency that the lattice could support. The
low modes are well described by the analogues of Eq. (5-30):

1 Y 1/2
42

where L is the thickness of the crystal. Thus the Jowest frequency
of vibration of a crystal 1 cm across would be of the order
of 10° Hz.

To return to the highest possible mode, this is the one in
which adjacent atoms are displaced oppositely to one another
(see Fig. 5-18). Such motion can be very effectively stimulated
by light falling upon an ionic crystal such as sodium chloride, in
which the Na*t and Cl~ ions are always being pushed in opposite
directions by the electric field of the light wave. From our very
rough calculation, we see that a resonance condition between
the light and the lattice might be expected to occur at a frequency
of the order of 10'2 Hz, corresponding to a wavelength of the
order of 3 X 107%m, or 30u. This is infrared. Figure 5-20

100
80
R
5 60
3
Fig. 5-20 Trans- =
. . , o 40
mission of infrared £
radiation through a Pt
thin (0.17 p) sodium 20
chloride film.
[After R. B. Barnes, 0
Z. Physik, 75, 723 40 45 50 55 60 65 70
(1932).] Wavelength, p
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shows a beautiful example of just such a resonance, resulting in
increased absorption of light by the crystal at wavelengths in the
neighborhood of 60u. It was observed using an extremely thin
slice of NaCl—only about 10~7 m thick.

5-1 The best way to get a feeling for the behavior of a coupled oscil-
lator system is to make your own, and experiment with it under various
conditions. Try making a pair of identical pendulums, connected by
a drinking straw that can be set at various distances down the threads
(see sketch). Study the motions for oscillations both in the plane of
the pendulums (when they move toward or away from one another)
and also perpendicular to this plane. Try measuring the normal mode
periods and also the period of transfer of motion from one to the other
and back. Do your results conform to what the text describes?

5-2 Two identical pendulums are connected by a light coupling
spring. Each pendulum has a length of 0.4 m, and they are at a place
where g = 9.8 m/sec2. With the coupling spring connected, one
pendulum is clamped and the period of the other is found to be 1.25 sec
exactly.

(a) With neither pendulum clamped, what are the periods of the
two normal modes ?

(b) What is the time interval between successive maximum
possible amplitudes of one pendulum after one pendulum is drawn
aside and released?

5-3 A mass m hangs on a spring of spring constant k. In the position
of static equilibrium the length of the spring is /. If the mass is drawn
sideways and then released, the ensuing motion will be a combination
of (a) pendulum swings and (b) extension and compression of the
spring. Without using a lot of mathematics, consider the behavior of
this arrangement as a coupled system.

5-4 Two harmonic oscillators 4 and B, of mass m and spring con-
stants k4 and kp, respectively, are coupled together by a spring of
spring constant k¢. Find the normal frequencies «’ and «'’ and describe
the normal modes of oscillation if kg2 = kiks.

5-5 Two identical undamped oscillators, 4 and B, each of mass m
and natural (angular) frequency wg, are coupled in such a way that
the coupling force exerted on A is am(d®xp/dt?), and the coupling
force exerted on B is am(d?®x,/dt?), where a is a coupling constant of
magnitude less than 1. Describe the normal modes of the coupled
system and find their frequencies.

5-6 Two equal masses on an effectively frictionless horizontal air
track are held between rigid supports by three identical springs, as
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shown. The displacements from equilibrium along the line of the
springs are described by coordinates x4 and xp, as shown. If either of
the masses is clamped, the period T (= 2#/w) for one complete vibra-
tion of the other is 3 sec.

. A B
%—QWD“—O——’DDDD“—O—’@DDD\—%
E— D — A

Xy Xp

(a) If both masses are free, what are the periods of the two normal
modes of the system? Sketch graphs of x4 and xp versus 7 in each
mode. At ¢ = 0, mass A is at its normal resting position and mass B
is pulled aside a distance of 5 cm. The masses are released from rest
at this instant.

(b) Write an equation for the subsequent displacement of each
mass as a function of time.

(c) What length of time (in seconds) characterizes the periodic
transfer of the motion from B to A4 and back again? After one cycle,
is the situation at # = 0 exactly reproduced? Explain.

5-7 Two objects, 4 and B, each of mass m, are connected by springs
as shown. The coupling spring has a spring constant k., and the other
two springs have spring constant k. If B is clamped, A vibrates at a
frequency v4 of 1.81sec—1. The frequency »1 of the lower normal
mode is 1.14 sec—1,

% A B
%—/DDDD —(O—"0000— )—0000 \——%
k, m A, m Ao A

(a) Satisfy yourself that the equations of motion of 4 and B are

xs _ g k

m—- = —koxs — lxsa — xg)
£
d;;B = —koxp — ke(xp — x4)

(b) Putting wo = Vko/m, show that the angular frequencies
w1 and we of the normal modes are given by

w1 = wo, w2 = [wo® 4+ Qk/m)]12,
and that the angular frequency of A when Bis clamped (x5 = 0always)
is given by

wa = [wo? + (k./m)]1/?

(¢) Using the numerical data above, calculate the expected
frequency (v2) of the higher normal mode. (The observed value
was 2.27 sec™1)

(d) From these same data calculate the ratio k./ko of the two
spring constants.

Coupled oscillators and normal modes
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5-8 (a) A force F is applied at point 4 of a pendulum as shown. At
what angle 6 (< 1 rad) is the new equilibrium position? What force
F’, applied at m, would produce the same result?

(a) (b)

Two identical pendulums consisting of equal masses mounted on
rigid, weightless rods, are arranged as shown. A light spring (un-
stretched when both rods are vertical, and placed as shown) provides
the coupling.

(b) Write down the differential equations of motion for small-
amplitude oscillations in terms of #; and §2. (Neglect damping.)

(c) Describe the motion of the pendulums in each of the normal
modes.

(d) Calculate the frequencies of the normal modes of the system.

[Hint: The symmetry of the system can be exploited to good
advantage, particularly in parts (c) and (d), as long as the answers
obtained this way are checked in the equations.]

5-9 The CO2 molecule can be likened to a system made up of a
central mass m2 connected by equal springs of spring constant & to
two masses m1 and m3 (with mg = m).

0 16 C‘l 0 16
O——0O—2000—0
ny, A n,; k nt;

(a) Set up and solve the equations for the two normal modes in
which the masses oscillate along the line joining their centers. [The
equation of motion for m3 is ms(d®x3/dt?) = —k(xz — x2) and
similar equations can be written for m1 and ms.]

(b) Putting m1 = m3 = 16 units, me = 12 units, what would
be the ratio of the frequencies of the two modes, assuming this classical
description were applicable?

5-10 Two equal masses are connected as shown with two identical
massless springs of spring constant k. Considering only motion in the
vertical direction, show that the angular frequencies of the two normal
modes are given by w2 = (3 &= v/5)k/2m and hence that the ratio
of the normal mode frequencies is (v/5 + 1)/(v/5 — 1). Find the
ratio of amplitudes of the two masses in each separate mode. (Note:
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You need not consider the gravitational forces acting on the masses,
because they are independent of the displacements and hence do not
contribute to the restoring forces that cause the oscillations. The
gravitational forces merely cause a shift in the equilibrium positions
of the masses, and you do not have to find what those shifts are.)

5-11 The sketch shows a mass M on a frictionless plane connected
to support O by a spring of stiffness k. Mass Mo is supported by a
string of length / from M;.

Frictionless plane

yO A | M,
o .
{
2]
X
%2 I
(a) Using the approximation of small oscillations,
sin =~ tan § = )2—-—;—2

and starting from F = ma, derive the equations of motion of M;
and Mo:

Mix, = —kx; + Mz%(XZ - xl)

_ Mg

Moxo 7

(x2 — x1)

(b) For M} = M2 = M, use the equations to obtain the normal
frequencies of the system.

(c) What are the normal-mode motions for M; = Ms = M
and g/I > k/M?

5-12 Two equal masses m are connected to three identical springs
(spring constant k) on a frictionless horizontal surface (see figure).
One end of the system is fixed; the other is driven back and forth with
a displacement X = X cos w¢. Find and sketch graphs of the resulting
displacements of the two masses.

—>X A B \
— 0000 —)—"0000"—)—" 000D
A m k

m k

5-13 A string of length 3/ and negligible mass is attached to two fixed
supports at its ends. The tension in the string is T..

Coupled oscillators and normal modes



(a) A particle of mass m is attached at a distance / from one end
of the string, as shown. Set up the equation for small transverse oscilla-
tions of m, and find the period.

(b) An additional particle of mass m is connected to the string
as shown, dividing it into three equal segments each with tension T.
Sketch the appearance of the string and masses in the two separate
normal modes of transverse oscillations.

(c) Calculate w for that normal mode which has the higher
frequency.

Qs
—+—Os

5-14 To get a feeling for the use of the equation,

_ . pnw
Apn = Cy sin (N+ 1)

[Eq. (5-26) in the text], which describes the amplitudes of connected
particles in the various normal modes, take the case N = 3 and tabu-
late, in a 3 X 3 array, the relative numerical values of the amplitudes
of the particles (p = 1, 2, 3) in each of the normal modes (n = 1, 2, 3).

1
A—O—0O—0O——8

5-15 An elastic string of negligible mass, stretched so as to have a
tension T, is attached to fixed points 4 and B, a distance 4/ apart, and
carries three equally spaced particles of mass m, as shown.

(a) Suppose that the particles have small transverse displace-
ments y1, y2, and ys, respectively, at some instant. Write down the
differential equation of motion for each mass.

(b) The appearance of the normal modes can be found by draw-
ing the sine curves that pass through 4 and B. Sketch such curves so
as to find the relative values and signs of 41, A2, and 43 in each of the
possible modes of the system.

(c) Putting y; = Aisinwt, yo = Azsinwt, y3 = Agsinwf in
the equations (a), use the ratios A;:A42: 43 from part (b) to find the
angular frequencies of the separate modes.
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5-16 Consider a system of N coupled oscillators driven at a frequency
w < 2wo (i.e,, yo = 0, yv41 = hcoswr). Find the resulting ampli-
tudes of the N oscillators. [Hint: The differential equations of motion
are the same as in the undriven case (only the boundary conditions
are different). Hence try 4, = C sin ap, and determine the necessary
values of a and C. (Nore: If w > 2wg, a is complex and the wave
damps exponentially in space.)]

5-17 It is shown in the text that the highest normal-mode frequency
of a line of masses can be found by considering a particle near the
middle of the line, bordered by particles that have almost equal and
opposite displacements to its own. Show that the same frequency can
be calculated by considering the firsz particle in the line, acted on by
the tension in the segments of string joining it to the fixed end and to
particle 2 (see Fig. 5-19 and the related discussion).
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