:

Announcements

                                                                                                                                      

Spring 2014                              

 

Middle East Technical University

Electrical and Electronics Engineering Department

 

EE 202

CIRCUIT THEORY II

 

 Instructors

 

    Section 1:  Emre Tuna,  C-103 

    Section 2:  Zafer Ünver,  D-207     

    Section 3:  Çağatay Candan,  EZ-11A

    Section 4:  Yeşim Serinağaoğlu, DZ-03

    Section 5:  Sencer Koç, D-212

   

 

Reference Texts

 

1.    Fundamentals of Electric Circuits, C. K. Alexander and M. N. O. Sadiku,

       McGraw-Hill Book Company.

2.    Electric Circuits, J. W. Nilsson and S. A. Riedel,

       Pearson Prentice Hall.

 

Grading

 

Two midterm examinations (28% each) and the final examination (44%).

 

 

Resit Examination Policy

 

A student

i.  missing any midterm examination without a valid excuse,

ii. having an average of less than 20 over 100 from the 2 midterm examinations

will not be admitted to the final examination and will receive NA grade. Students who are graded with “NA” will not be eligible for the RESIT EXAMINATION.

 

 

Course Web Site

 

http://www.eee.metu.edu.tr/~ccandan/ee202/EE202_Spring201314/

 

 

Course Outline

 

 

I.   Linear Time-Invariant Dynamic Circuits  (10 Hrs.)

 

1.    Node, modified (polynomial) node, mesh and state-space formulations.

2.    Complex frequency; complex exponential function.

3.    Natural response.

       Natural frequencies; bounded/unbounded responses;

       modes and mode excitation.

       State transition matrix.

4.    Particular solutions for complex exponential inputs.

       Phasors; KVL and KCL in the phasor domain; phasor domain  elements,   

       impedance and admittance; phasor domain circuits.

 

 

II.  Sinusoidal Steady-State (SSS) Analysis  (12 Hrs.)

 

1.        Periodic functions; average and effective values.

2.        Responses of LTI dynamic circuits to sinusoidal excitations;

        transient/steady-state responses.

3.        Analysis of phasor domain circuits; phasor diagrams.

4.        Passive one-ports: resistive, inductive and capacitive one-ports.

5.        Superposition in the SSS.

6.        Instantaneous, average, complex, real, reactive and apparent powers;                

power factor; conservation of power.

7.        Power calculations in the SSS; superposition in power calculations.

8.        Power factor correction.

9.        Maximum power transfer.

 

 

III.  Balanced Three-Phase Circuits  (6 Hrs.)

 

1.    Three-phase voltage sources and loads; Y and D connections.

2.    Analysis of balanced three-phase circuits; phasor diagrams.

3.    Power calculations.

 

  

IV.  Complex Frequency Domain Analysis  (12 Hrs.)

 

1.        Laplace transformation.

Real rational functions; poles and zeros; partial fraction expansion.

2.        Solution of formulation equation by Laplace transformation.

3.        Complex frequency domain voltages and currents;  KVL and KCL in the complex  frequency domain; complex frequency domain elements,  impedance and admittance; complex frequency domain circuits.

4.    Analysis of complex frequency domain circuits.

5.    System functions: input and transfer functions; impulse response and  

       convolution integral; step response; SSS response.

6.    Two-port circuits: impedance, admittance, hybrid, chain and scattering  

        representations.

 

 

V.   Frequency Response  (10 Hrs.)

 

1.   Frequency response functions; magnitude, phase and time-delay characteristics.

2.   First order lowpass, highpass and allpass passive LC filters.

      Second order lowpass, highpass, bandpass, bandstop and allpass passive  LC 

      and active RC filters.

3.   Parallel and series resonance: resonant frequency, quality factor,                

      resonance  circuits with finite-Q capacitors and inductors.

4.   Magnitude and frequency scalings.

5.   Bode plots.

6.   Design of Butterworth and Chebyshev filters.

 

 

VI.  Time-Varying and Nonlinear  Dynamic Circuits  (2 Hrs.)

 

1.      State-space formulation of time-varying and nonlinear dynamic circuits.