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define mathematically in Section 12.1. Before doing so, we need
to explain why another analytical technique is needed. First, we

ing equations consist of more than a single node-voltage or mesh-
current differential equation. In other words, we want to consider
multiple-node and multiple-mesh circuits that are described by
- sets of linear differential equations.
Second, we wish to determine the transient response of cir-
| cuits whose signal sources vary in ways more complicated than
s ffnit’i‘:ntﬁgg;ﬂa:‘;;;i i‘iggr‘fgg f;;';:zzfm B L the simple dc level jumps considered in Chapters 7 and 8. Third,
transform, the Laplace transform table, and/ora =~ We can use the Laplace transform to introduce the concept of the

tabls of peiational tiansfotms. 1 transfer function as a tool for analyzing the steady-state sinu-
2 Be able to calculate the inverse Laplace 5

transform using partial fraction expansion and \

the Laplace transform table. . source is varied. We discuss the transfer function in Chapter 13.

3 Understand and know how to use the initial . Finally, we wish to relate, in a systematic fashion, the time-
value theorem and the final value theorem.

soidal response of a circuit when the frequency of the sinusoidal

; domain behavior of a circuit to its frequency-domain behavior.
| Using the Laplace transform will provide a broader understand-
ing of circuit functions.

In this chapter, we introduce the Laplace transform, discuss
| its pertinent characteristics, and present a systematic method for
| transforming from the frequency domain to the time domain.

428 |


Administrator
Typewriter
Nielsson and Riedel, Electric Circuits, 9th Edition 

Administrator
Typewriter

Administrator
Typewriter
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Transient Effects

As we learned in Chapter 9, power delivered from electrical
wall outlets in the U.S. can be modeled as a sinusoidal volt-
age or current source, where the frequency of the sinusoid is
60 Hz. The phasor concepts introduced in Chapter 9 allowed
us to analyze the steady-state response of a circuit to a sinu-
soidal source.

It is often important to pay attention to the complete
response of a circuit to a sinusoidal source, Remember that the
complete response has two parts—the steady-state response
that takes the same form as the input to the circuit, and the
transient response that decays to zero as time progresses.
When the source for a circuit is modeled as a 60 Hz sinusoid,
the steady-state response is also a 60 Hz sinusoid whose mag-
nitude and phase angle can be calculated using phasor circuit
analysis. The transient response depends on the components
that make up the circuit, the values of those components, and
the way the components are interconnected. The voltage and
current for every component in a circuit is the sum of a tran-
sient part and a steady-state part, once the source is switched
into the circuit.

While the transient part of the voltage and current even-
tually decays to zero, initially this transient part, when added
to the steady-state part, may exceed the voltage or current
rating of the circuit component. This is why it is important to
be able to determine the complete response of a circuit. The
Laplace transform techniques introduced in this chapter can
be used to find the complete response of a circuit to a sinu-
soidal source.

Consider the RLC circuit shown below, comprised of
components from Appendix H and powered by a 60 Hz sinu-
soidal source. As detailed in Appendix H, the 10 mH induc-
tor has a current rating of 40 mA. The amplitude of the
sinusoidal source has been chosen so that this rating is met
in the steady state (see Problem 12.54). Once we have pre-
sented the Laplace transform method, we will be able to
determine whether or not this current rating is exceeded
when the source is first switched on and both the transient
and steady-state components of the inductor current are
active.
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Introduction to the Laplace Transform

Laplace transform »

12.1 Definition of the Laplace
Transform

The Laplace transform of a function is given by the expression

(@) = [ s (121

where the symbol £{f ()} is read “the Laplace transform of f(t).”
The Laplace transform of f(¢) is also denoted F(s); that is,

F(s) = £{f (0} (12.2)

This notation emphasizes that when the integral in Eq. 12.1 has been evalu-
ated, the resulting expression is a function of s. In our applications, ¢ repre-
sents the time domain, and, because the exponent of e in the integral of
Eq. 12.1 must be dimensionless, s must have the dimension of reciprocal time,
or frequency. The Laplace transform transforms the problem from the time
domain to the frequency domain. After obtaining the frequency-domain
expression for the unknown, we inverse-transform it back to the time domain.

If the idea behind the Laplace transform seems foreign, consider
another familiar mathematical transform. Logarithms are used to change a
multiplication or division problem, such as A = BC, into a simpler addition
or subtraction problem: log A = log BC = log B + log C. Antilogs are
used to carry out the inverse process. The phasor is another transform; as we
know from Chapter 9, it converts a sinusoidal signal into a complex number
for easier, algebraic computation of circuit values. After determining the
phasor value of a signal, we transform it back to its time-domain expression.
Both of these examples point out the essential feature of mathematical
transforms: They are designed to create a new domain to make the mathe-
matical manipulations easier. After finding the unknown in the new domain,
we inverse-transform it back to the original domain. In circuit analysis, we
use the Laplace transform to transform a set of integrodifferential equations
from the time domain to a set of algebraic equations in the frequency
domain. We thercfore simplify the solution for an unknown quantity to the
manipulation of a set of algebraic equations.

Before we illustrate some of the important properties of the Laplace
transform, some general comments are in order. First, note that the inte-
gral in Eq. 12.1 is improper because the upper limit is infinite. Thus we are
confronted immediately with the question of whether the integral con-
verges. In other words, does a given f(¢) have a Laplace transform?
Obviously, the functions of primary interest in engineering analysis have
Laplace transforms; otherwise we would not be interested in the trans-
form. In linear circuit analysis, we excite circuits with sources that have
Laplace transforms. Excitation functions such as ¢* or ¢, which do not
have Laplace transforms, are of no interest here.

Second, because the lower limit on the integral is zero, the Laplace
transform ignores f(t) for negative values of ¢. Put another way, F(s) is
determined by the behavior of f(¢) only for positive values of ¢. To empha-
size that the lower limit is zero, Eq. 12.1 is frequently referred to as the
one-sided, or unilateral, Laplace transform. In the two-sided, or bilateral,
Laplace transform, the lower limit is —00. We do not use the bilateral
form here; hence F(s) is understood to be the one-sided transform.

Another point regarding the lower limit concerns the situation when
f () has a discontinuity at the origin. If f(¢) is continuous at the origin-as,



for example, in Fig. 12.1(a)— f(0) is not ambiguous. However, if f(¢) has a
finite discontinuity at the origin—as, for example, in Fig. 12.1(b)—the
question arises as to whether the Laplace transform integral should
include or exclude the discontinuity. In other words, should we make the
lower limit 0™ and include the discontinuity, or should we exclude the dis-
continuity by making the lower limit 0*? (We use the notation 0~ and 0% to
denote values of ¢ just to the left and right of the origin, respectively.)
Actually, we may choose either as long as we are consistent. For reasons to
be explained later, we choose 0~ as the lower limit.

Because we are using (0~ as the lower limit, we note immediately that
the integration from 0~ to 0" is zero. The only exception is when the dis-
continuity at the origin is an impulse function, a situation we discuss in
Section 12.3. The important point now is that the two functions shown in
Fig. 12.1 have the same unilateral Laplace transform because there is no
impulse function at the origin.

The one-sided Laplace transform ignores f(¢) for ¢ < 0. What hap-
pens prior to 07 is accounted for by the initial conditions. Thus we use the
Laplace transform to predict the response to a disturbance that occurs
after initial conditions have been established.

In the discussion that follows, we divide the Laplace transforms into
two types: functional transforms and operational transforms. A functional
transform is the Laplace transform of a specific function, such as sin wt, ¢,
¢™™, and so on. An operational transform defines a general mathematical
property of the Laplace transform, such as finding the transform of the
derivative of f(r). Before considering functional and operational trans-
forms, however, we need to introduce the step and impulse functions.

12.2 The Step Function

We may encounter functions that have a discontinuity, or jump, at the ori-
gin. For example, we know from earlier discussions of transicnt behavior
that switching operations create abrupt changes in currents and voltages.
We accommodate these discontinuities mathematically by introducing the
step and impulse functions.

Figure 12.2 illustrates the step function. It is zero for ¢ < 0. The sym-
bol for the step function is Ku(r). Thus, the mathematical definition of the
step function is

Ku(t) = 0,
Ku(t) = K,

t <0,

t > 0. (12.3)
If K is 1, the function defined by Eq. 12.3 is the unit step.

The step function is not defined at ¢ = 0. In situations where we need to
define the transition between 0~ and 0%, we assume that it is linear and that

Ku(0) = 0.5K. (12.4)

As before, 07 and 0" represent symmetric points arbitrarily close to the
left and right of the origin. Figure 12.3 illustrates the linear transition from
0" to 0",

A discontinuity may occur at some time other than ¢ = 0; for exam-
ple, in sequential switching. A step that occurs at ¢ = « is expressed as
Ku(t — a). Thus

Ku(t — a) = 0,
Ku(t — a) = K,

t < a,

t>a. (12.5)
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Figure 12.1 A A continuous and discontinuous function
at the origin. (a) f(#) is continuous at the origin.
(b) f(¢) is discontinuous at the origin.

f@

0
Figure 12.2 A The step function.

Figure 12.3 A The linear approximation to the step
function.
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@ If a > 0, the step occurs to the right of the origin, and if a < 0, the step
occurs to the left of the origin. Figure 12.4 illustrates Eq. 12.5. Note that
Klbe——- the step function is 0 when the argument f — a is negative, and it is K

when the argument is positive.
A step function equal to K for ¢t < « is written as Ku(a — t). Thus

|
0 a Ku(a —t) = K, t<a,
Figure 12.4 A A step function occurring at ¢ = a Ku(@a~1) =0 t>a (12.6)
when a > 0.
The discontinuity is to the left of the origin when a < 0. Equation 12.6 is
f shown in Fig. 12.5.
One application of the step function is to use it to write the mathe-
K matical expression for a function that is nonzero for a finite duration but is

defined for all positive time. One example useful in circuit analysis is a

finite-width pulse, which we can create by adding two step functions. The
! function K[u(t — 1) — u(t — 3)] has the value K for 1 < ¢ < 3 and the

value 0 everywhere else, so it is a finite-width pulse of height K initiated at
Figure 12.5 A A step function Ku(a — ¢) fora > 0.t = 1 and terminated at ¢ = 3. In defining this pulse using step functions,
it is helpful to think of the step function «(+ — 1) as “turning on” the con-
stant value K at¢ = 1, and the step function ~u(¢r — 3) as “turning off” the
constant value K at t+ = 3. We use step functions to turn on and turn off
linear functions at desired times in Example 12.1.

0 a

HElUER VAN Using Step Functions to Represent a Function of Finite Duration

Use step functions to write an expression for the +2t — 8, on at f = 3, off at t+ = 4. These straight
function illustrated in Fig. 12.6. line segments and their equations are shown in
Fig. 12.7. The expression for f(¢) is
f
F@) = 2t[ut) — u(t — D] + (=2t + Hu@ - 1)
2 —u(t — 3)] + @2t = )[u@t — 3) — u(t — 4)].
l 1 ] t(s)
0 1 2 3 4 £
—2r N P
L
Figure 12.6 A The function for Example 12.1. 5L ~
=2+ 4

Solution | L
The function shown in Fig. 12.6 is made up of linear 0 1 2 3 4 ' t(s)
segments with break points at 0,1, 3, and 4 s. To con- 5 L 2—-8
struct this function, we must add and subtract linear LU
functions of the proper slope. We use the step func- 4 ~,
tion to initiate and terminate these linear segments -4 -
at the proper times. In other words, we use the step
function to turn on and turn off a straight line with Figure 12.7 A Definition of the three line segments turned
the following equations: +2¢, on at ¢ = 0, off at on and off with step functions to form the function shown
t=1, =2t +4, on at t =1, off at r = 3; and in Fig. 12.6.
NOTE: Assess your understanding of step functions by trying Chapter Problems 12.2 and 12.3.




12.3 The Impulse Function

When we have a finite discontinuity in a function, such as that illustrated
in Fig. 12.1(b), the derivative of the function is not defined at the point of
the discontinuity. The concept of an impulse function! enables us to define
the derivative at a discontinuity, and thus to define the Laplace transform
of that derivative. An impulse is a signal of infinite amplitude and zero
duration. Such signals don’t exist in nature, but some circuit signals come
very close to approximating this definition, so we find a mathematical
model of an impulse useful. Impulsive voltages and currents occur in cir-
cuit analysis either because of a switching operation or because the circuit
is excited by an impulsive source. We will analyze these situations in
Chapter 13, but here we focus on defining the impulse function generally.

To define the derivative of a function at a discontinuity, we first assume
that the function varies linearly across the discontinuity, as shown in
Fig. 12.8, where we observe that as € — 0, an abrupt discontinuity occurs at
the origin. When we differentiate the function, the derivative between —e
and +e is constant at a value of 1/2¢. Fort > e, the derivative is —ae ¢ ™%,
Figure 12.9 shows these observations graphically. As e approaches zero, the
value of f'(t) between +e approaches infinity. At the same time, the dura-
tion of this large value is approaching zero. Furthermore, the area under
f'(t) between e remains constant as € — 0. In this example, the area is
unity. As e approaches zero, we say that the function between =*e
approaches a unit impulse function, denoted 8(¢). Thus the derivative of f(t)
at the origin approaches a unit impulse function as e approaches zero, or

ase— 0.

f1(0) = 8(r)

If the area under the impulse function curve is other than unity, the
impulse function is denoted K 6(¢), where K is the area. K is often referred
to as the strength of the impulse function.

To summarize, an impulse function is created from a variable-parameter
function whose parameter approaches zero. The variable-parameter func-
tion must exhibit the following three characteristics as the parameter
approaches zero:

1. The amplitude approaches infinity.
2. The duration of the function approaches zero.
3. The area under the variable-parameter function is constant as the

parameter changes.

Many different variable-parameter functions have the aforementioned
characteristics. In Fig. 12.8, we used a linear function f(z) = 0.5¢/e + 0.5.
Another example of a variable-parameter function is the expo-
nential function:

f(t) = f—ee""'/ ‘. (12.7)

As € approaches zero, the function becomes infinite at the origin and at the
same time decays to zero in an infinitesimal length of time. Figure 12.10
illustrates the character of f(¢) as e — 0. To show that an impulse function

! The impulse function is also known as the Dirac delta function.
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Figure 12.8 A A magnified view of the discontinuity in
Fig. 12.1(b), assuming a linear transition between —e

and +e.

fr@)

Figure 12.9 A The derivative of the function shown
in Fig. 12.8.

f®

K/(2e)

Figure 12.10 A A variable-parameter function used to
generate an impulse function.
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f (|f)
(K) (K)

K8(1) Ka(r — a)

t

0 a

Figure 12.11 A A graphic representation of the impulse
Ké&(t) and K8(t — a).

is created as e — 0, we must also show that the area under the function is
independent of €. Thus,

0 0o
K
Areca = / ~etledr + —K—e_'/‘dt
_QOZE 0 €

ok

K el/’e 0 K e—l/e

. +—»
2 1/€|-o  2¢ —1/e

= 7 ? =K, (12.8)

0

which tells us that the area under the curve is constant and equal to K units.
Therefore, as e — 0, (1) — K8(¢).
Mathematically, the impulse function is defined

{o.9]

/ K§(t)dt = K; (12.9)

5(t) =0, t#0. (12.10)

Equation 12.9 states that the area under the impulse function is constant.
This area represents the strength of the impulse. Equation 12.10 states
that the impulse is zero everywhere except at + = 0. An impulse that
occurs at ¢+ = a is denoted K8(t — a).

The graphic symbol for the impulse function is an arrow. The strength
of the impulse is given parenthetically next to the head of the arrow.
Figure 12.11 shows the impulses K8(¢) and K&(t — a).

An important property of the impulse function is the sifting property,
which is expressed as

/ ot — a)dt = f(a), (12.11)

where the function f(¢) is assumed to be continuous at ¢ = g; that is, at the
location of the impuise. Equation 12.11 shows that the impulse function
sifts out everything except the value of f(t) at t = a. The validity of
Eq. 12.11 follows from noting that (¢ — a) is zero everywhere except at
t = a, and hence the integral can be written

ate

f(6)s(t — a)dr. (12.12)

a—

[ = / f)so(t — a)yde =

But because f(¢) is continuous at g, it takes on the value f(a) as ¢t —a, so

[ = 'aﬂf(a)S(t —a)dt = f(a) /.‘ e8([ — a)dt
o = f(a). . (12.13)

We use the sifting property of the impulse function to find its Laplace
transform:

L{s8(n)} = /0 8(tye ™ dt = / S8(t)dr = 1, (12.14)

0

which is an important Laplace transform pair that we make good use of in
circuit analysis.



We can also define the derivatives of the impulse function and the
Laplace transform of these derivatives. We discuss the first derivative,
along with its transform and then state the result for the higher-order
derivatives.

The function illustrated in Fig. 12.12(a) generates an impulse function
as € = 0. Figure 12.12(b) shows the derivative of this impulse-generating
function, which is defined as the derivative of the impulse [8'(¢)] as e — 0.
The derivative of the impulse function sometimes is referred to as a
moment function, or unit doublet.

To find the Laplace transform of é8'(r), we simply apply the defining
integral to the function shown in Fig. 12.12(b) and, after integrating, let
€ = 0. Then

0 e
1 1
L{&'()} = lim[/ —e Mdr + / (——2>e“"dt}
e—() —e € o €

&€ + e — 2

= lim 5
e—0 S€”°
. se™ — se”*
= lim
e—0 2es

52 o5€ S2 o€
e—0) 2s

= . (12.15)

In deriving Eq. 12.15, we had to use I'Hépital’s rule twice to evaluate the
indeterminate form 0/0.

Higher-order derivatives may be generated in a manner similar to
that used to generate the first derivative (see Problem 12.6), and the defin-
ing integral may then be used to find its Laplace transform. For the nth
derivative of the impulse function, we find that its Laplace transform sim-
ply is 5”; that is,

L8} = s, (12.16)

Finally, an impulse function can be thought of as a derivative of a step
function; that is,

7 (12.17)

3(1‘ ) =

Figure 12.13 presents the graphic interpretation of Eq. 12.17. The function
shown in Fig. 12.13(a) approaches a unit step function as € — 0. The func-
tion shown in Fig. 12.13(b)—the derivative of the function in
Fig. 12.13(a) —approaches a unit impulse as € — 0.

The impulse function is an extremely useful concept in circuit analy-
sis, and we say more about it in the following chapters. We introduced the
concept here so that we can include discontinuities at the origin in our def-
inition of the Laplace transform.

NOTE: Assess your understanding of the impulse function by trying
Chapter Problems 12.7,12.9, and 12.10.
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Figure 12.12 A The first derivative of the impulse
function. (a) The impulse-generating function used to
define the first derivative of the impulse. (b) The first
derivative of the impulse-generating function that
approaches &'(¢) as € — (.

f

|
m
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(b)

Figure 12.13 A The impulse function as the derivative
of the step function: (a) f(t) — u(¢) as € = 0; and
(b) f'(t) = 6(t) as e = 0.
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@

Figure 12.14 A A decaying exponential function.

f)

10 -
ANAN
[

0

~1.0 -

Figure 12.15 A A sinusoidal function for ¢ > 0.

12.4 Functional Transforms

A functional transform is simply the Laplace transform of a specified
function of ¢. Because we are limiting our introduction to the unilat-
eral, or one-sided, Laplace transform, we define all functions to be zero
fort < 0.

We derived one functional transform pair in Section 12.3, where
we showed that the Laplace transform of the unit impulse function
equals 1; (see Eq. 12.14). A second illustration is the unit step function
of Fig. 12.13(a), where

ﬂf{u(t)}:/ f(t)e”“’dt=/ le="dt
o 1 v (12.18)

—st

i)

0 s

Equation 12.18 shows that the Laplace transform of the unit step function
is 1/s.

The Laplace transform of the decaying exponential function shown in
Fig. 12.14 is

o (o] 1
Ple) = / e e dt = / @M g =~ (12.19)
o+ 0* s+ a

In deriving Eqgs. 12.18 and 12.19, we used the fact that integration across
the discontinuity at the origin is zero.

A third illustration of finding a functional transform is the sinusoidal
function shown in Fig. 12.15. The expression for f(¢t) for t > 07 is sin wt;
hence the Laplace transform is

P{sinwt} = / (sin wt)e™" di
0

[ Jot _ —jwt
[
0 2j

‘X’e—(s—jw)l - e—(s+jw)!
= dt
0

- 2]
(o
_2]' s—jo s+t jo
)
= . 12.20
s+ o ( )

Table 12.1 gives an abbreviated list of Laplace transform pairs. It
includes the functions of most interest in an introductory course on cir-
cuit applications.



TABLE 12.1  An Abbreviated List of Laplace Transform Pairs

Type fO (£>0-) F(s)
(impulsc) 5(1) 1
1
(step) u(t) s
1
(ramp) i !
1
> a1t —at
(exponential) e Tt a
. . w
(sine) sin w! 1 ol
(cosine) cos wt 2 j_ e
1
d d e
(damped ramp) (4 G+ ap
(damped sine) e " sinwr T a(;z o
+
(damped cosine) e ¥ cos wt S

v ASSESSMENT PROBLEM

12.5

Operational Transforms

Objective 1—Be able to calculate the Laplace transform of a function using the definition of Laplace transform

12.1 Use the defining integral to
a) find the Laplace transform of cosh 8t;

b) find the Laplace transform of sinh B¢. (b) B/(s* — B?).

NOTE: Also try Chapter Problem 12.17.

12.5 Operational Transforms

Operational transforms indicate how mathematical operations performed
on either f(¢) or F(s) are converted into the opposite domain. The opera-
tions of primary interest are (1) multiplication by a constant; (2) addition
(subtraction); (3) differentiation; (4) integration; (5) translation in the time
domain; (6) translation in the frequency domain; and (7) scale changing,

Multiplication by a Constant

From the defining integral, if
L{fO)} = F(s),
then
L{Kf(t)} = KF(s). (12.21)

Thus, multiplication of f(¢) by a constant corresponds to multiplying F(s)
by the same constant.

Answer: (a) s/(s* — B?);
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Addition (Subtraction)

Addition (subtraction) in the time domain translates into addition (sub-
traction) in the frequency domain. Thus if

Z{Ai(O} = F(s),
Z{f2()} = F(s),

2{H0)} = Fls),
then
LU + L) — f(D} = Fi(s) + FB(s) — F(s), (12.22)

which is derived by simply substituting the algebraic sum of time-domain
functions into the defining integral.

Differentiation

Differentiation in the time domain corresponds to multiplying F(s) by s
and then subtracting the initial value of f(¢)—that is, f(07)—from
this product:

sg{%(:)} = sF(s) — f(07), (12.23)

which is obtained directly from the definition of the Laplace transform, or

d “ld

We evaluate the integral in Eq. 12.24 by integrating by parts. Letting
u = e *and dv = [df(t)/dt]dt yields

%{m} .

dt

- / f(O)(—se™dr). (12.25)
0° 0°

Because we are assuming that f(¢) is Laplace transformable, the evalua-
tion of e™f(t) at t = o0 is zero. Therefore the right-hand side of Eq. 12.25
reduces to

—f£(07) + SA" f()e™dr = sF(s) — f(07).

This observation completes the derivation of Eq. 12.23. It is an important
result because it states that differentiation in the time domain reduces to
an algebraic operation in the s domain.

We determine the Laplace transform of higher-order derivatives by
using Eq. 12.23 as the starting point. For example, to find the Laplace
transform of the second derivative of f(z), we first let

0]

. 12.26
dt ( )

g(t)



Now we use Eq. 12.23 to write
G(s) = sF(s) — f(O7). (12.27)
But because

dg() _ d*f(1)

dt dr?

we write

Io d?
S v BECCRE R

Combining Eqgs. 12.26,12.27, and 12.28 gives
d*f (1) 2 df(07)
_CE —_— 7 = g s) — sA(07) — ——. s
: { 0P s F(s) — sf(07) i (12.29)

We find the Laplace transform of the nth derivative by successively
applying the preceding process, which leads to the general result

¢ {dﬂf(t)} — S”F(S) . S"_If(()_) _ S”—z df((f)

dr" dt

L@ d""'f(07)

12.30
de’ dr'! ( )

Integration

Integration in the time domain corresponds to dividing by s in the s domain.
As before, we establish the relationship by the defining integral:

EL’{ f(x)dx} = / [/f(x)d.{'e"“dr. (12.31)
0° JO JO

We evaluate the integral on the right-hand side of Eq. 12.31 by integrating

by parts, first letting
of
u= /f(x)dx,
0

dv = e¢™dr1.
Then

du = f(t)de,

v = -

12,5

Operational Transforms
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The integration-by-parts formula yields

"t B _e_“ r ‘
Sﬁ{/o_f(x)d.\} = S '[_f(x)d,\

The first term on the right-hand side of Eq. 12.32 is zero at both the upper
and lower limits. The evaluation at the lower limit obviously is zero,
whereas the evaluation at the upper limit is zero because we are assuming
that f() has a Laplace transform. The second term on the right-hand side
of Eq.12.32 is F(s)/s; therefore

iE{/f(x)dx} = fg, (12.33)
0 .

which reveals that the operation of integration in the time domain is trans-
formed to the algebraic operation of multiplying by 1/s in the s domain.
Equation 12.33 and Eq. 12.30 form the basis of the earlier statement that
the Laplace transform translates a set of integrodifferential equations into
a set of algebraic equations.

o0 0 st
+ / © _ f(o)ydr. (12.32)
O 0

p

Translation in the Time Domain

If we start with any function f(¢)u(t), we can represent the same function,
translated in time by the constant a, as f(¢ — a)u(t — a).? Translation in
the time domain corresponds to multiplication by an exponential in the
frequency domain. Thus

L{f(t — a)u(t — a)} = e“F(s), a>0. (12.34)

For example, knowing that

L)} = é ,

Eq. 12.34 permits writing the Laplace transform of (¢ — a)u(t — a)
directly:

e—(h‘

Z{(t — a)u(t - a)} =

5
N

The proof of Eq. 12.34 follows from the defining integral:
E{(t — au(t -~ a)} = f u(t = a)f(t — a)e™ dt
0

= / f@t — a)e™d:t. (12.35)

In writing Eq. 12.35, we took advantage of u(t — a) = 1 for t > a. Now
we change the variable of integration. Specifically, we let x = ¢ — a. Then

2 Note that throughout we multiply any arbitrary function f(¢) by the unit step function u(t)
to ensure that the resulting function is defined for all positive time.



x =0when ¢t = a,x = o0 whent = o and dx = dt. Thus we write the
integral in Eq. 12.35 as

P{f(t — a)u(t — a)} A Fx)e™S+ ) gy

=™ / flx)e > dx
JO
— e_mF(S),

which is what we set out to prove.

Translation in the Frequency Domain

Translation in the frequency domain corresponds to multiplication by an
exponential in the time domain:

E{e™f()} = F(s + a), (12.36)

which follows from the defining integral. The derivation of Eq. 12.36 is left
to Problem 12.13.

We may use the relationship in Eq. 12.36 to derive new transform
pairs. Thus, knowing that

s

L{coswt} = ,
{cos wt} S
we use Eq. 12.36 to deduce that
s+a
P{e " coswt} = ————.
{7 coswr} (s + a)® + &

Scale Changing
The scale-change property gives the relationship between f(¢) and F(s)
when the time variable is multiplied by a positive constant:

A}

L{f(ar)} = %F(;) a>0, (12.37)

the derivation of which is left to Problem 12.16. The scale-change property
is particularly useful in experimental work, especially where time-scale
changes are made to facilitate building a model of a system.

We use Eq. 12.37 to formulate new transform pairs. Thus, knowing that

s
s2 4+ 1

${cost} =

s

we deduce from Eq. 12.37 that

1 sl s
L{coswt} = > Jo)t + 1 RIS

Table 12.2 gives an abbreviated list of operational transforms.

12.5
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TABLE 12.2  An Abbreviated List of Operational Transforms

Operation
Multiplication by a constant

Addition/subtraction

First derivative (time)

Second dcerivative (time)

nth derivative (time)

Time integral

Translation in time

Translation in frequency

Scale changing

First derivative (s)

nth derivative (s)

s integral

v ASSESSMENT PROBLEM

J) F(s)

Kf(@) KF(s)
fil) + fot) = f5(0) + - Fi(s) + Fas) = Fy(s) + -+

1
a2 SF(s) ~ £(0)

2 .

d dft g') 2E(s) — sfoy - O (5? )

da" L,df (0™

(;;(,t) SUF(s) — s"TIF(07) = s f((h )

PO 4" (0)
’ dr’ dr™!

/f(x)dx L(S—)

Jo s
ft — a)u(t — a),a>0 e "™F(s)

e f (1) F(s + a)

. 1 (s
flat),a >0 ;F(;)

dF(s)

7@ T ds

e o d"F(s)
1) (-1
@ / F(u)du

Objective 1—Be able to calculate the Laplace transform of a function using the Laplace transform table or a table of

operational transforms

12.2 Use the appropriate operational transform A . 2

from Table 12.2 to find the Laplace transform nswer: () (s + a)*’

of each function: Bs

a) 2, (b) (s + a) — Bz;
d .

b) d—(e"” sinh Bt); 2 -
4 © = 232"

c) fcoswt. (s° + )

NOTE: Also try Chapter Problems 11.14 and 11.22.

Figure 12.16 A A parallel RLC circuit.

12.6 Applying the Laplace Transform

We now illustrate how to use the Laplace transform to solve the ordinary
integrodifferential equations that describe the behavior of lumped-
parameter circuits. Consider the circuit shown in Fig. 12.16. We assume
that no initial energy is stored in the circuit at the instant when the switch,
which is shorting the dc current source, is opened. The problem is to find
the time-domain expression for v(t) when ¢ = 0.



We begin by writing the integrodifferential equation that v(z) must
satisfy. We need only a single node-voltage equation to describe the cir-
cuit. Summing the currents away from the top node in the circuit gener-
ates the equation:

dv(r)
dt

()
R

t
+ %/ v(x)dx + C = Lyu(t). (12.38)
0

Note that in writing Eq. 12.38, we indicated the opening of the switch in
the step jump of the source current from zero to .

After deriving the integrodifferential equations (in this example, just
one), we transform the equations to the s domain. We will not go through
the steps of the transformation in detail, because in Chapter 13 we will dis-
cover how to bypass them and generate the s-domain equations directly.
Briefly though, we use three operational transforms and one functional
transform on Eq. 12.38 to obtain

Ve | 1Y)

R T s + C[sV(s) — v(07)] = Ich), (12.39)

an algebraic equation in which V(s) is the unknown variable. We are
assuming that the circuit parameters R, L, and C, as well as the source cur-
rent I, are known; the initial voltage on the capacitor »(07) is zero
because the initial energy stored in the circuit is zero. Thus we have
reduced the problem to solving an algebraic equation.

Next we solve the algebraic equations (again, just one in this case) for
the unknowns. Solving Eq. 12.39 for V (s) gives

Idc/C

YO = 5RO + (LO)

(12.40)

To find v(¢t) we must inverse-transform the expression for V(s). We
denote this inverse operation

o(t) = £HV(s)}. (12.41)

The next step in the analysis is to find the inverse transform of the
s-domain expression; this is the subject of Section 12.7. In that section
we also present a final, critical step: checking the validity of the result-
ing time-domain expression. The need for such checking is not unique
to the Laplace transform; conscientious and prudent engineers always
test any derived solution to be sure it makes sense in terms of known
system behavior.

Simplifying the notation now is advantageous. We do so by dropping
the parenthetical ¢ in time-domain expressions and the parenthetical s in
frequency-domain expressions. We use lowercase letters for all time-domain

12.6

Applying the Laplace Transform
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variables, and we represent the corresponding s-domain variables with
uppercase letters. Thus

L{v} =V or v

£V,
Py =1 or i=%YI},

F{f} =F or $HF},

~
I

and so on.

NOTE: Assess your understanding of this material by trying Chapter
Problem 12.26.

12.7 Inverse Transforms

The expression for V (s) in Eq. 12.40 is a rational function of s; that is, one
that can be expressed in the form of a ratio of two polynomials in s such
that no nonintegral powers of s appear in the polynomials. In fact, for lin-
ear, lumped-parameter circuits whose component values are constant, the
s-domain expressions for the unknown voltages and currents are always
rational functions of s. (You may verify this observation by working
Problems 12.28-12.31.) If we can inverse-transform rational functions of s,
we can solve for the time-domain expressions for the voltages and cur-
rents. The purpose of this section is to present a straight-forward and sys-
tematic technique for finding the inverse transform of a rational function.

In general, we need to find the inverse transform of a function that
has the form

— N(S) — anS" + an—lsn_1 +--+aist+oa
D(S) bmsm + bln—lsm_] +oeot b]S + bl).

F(s)

(12.42)

The coefficients a and b are real constants, and the exponents #z and » are
positive integers. The ratio N(s)/D(s) is called a proper rational function
if m > n, and an improper rational function if » < n. Only a proper
rational function can be expanded as a sum of partial fractions. This
restriction poses no problem, as we show at the end of this section.

Partial Fraction Expansion: Proper Rational Functions

A proper rational function is expanded into a sum of partial fractions by
writing a term or a series of terms for each root of D(s). Thus D(s) must
be in factored form before we can make a partial fraction expansion. For
each distinct root of D(s), a single term appears in the sum of partial frac-
tions. For each multiple root of D(s) of multiplicity r, the expansion con-
tains r terms. For example, in the rational function

s+6
s(s + 3)(s + 1)?’

the denominator has four roots. Two of these roots are distinct—namely,
at s = 0 and s = —3. A multiple root of multiplicity 2 occurs at s = —1.
Thus the partial fraction expansion of this function takes the form

s+ 6 _ K, K, K; K,

— = + S+ .
s(s +3)(s + 1) s s+3 (s+1)P% s+1

(12.43)



The key to the partial fraction technique for finding inverse transforms
lies in recognizing the f(¢) corresponding to each term in the sum of par-
tial fractions. From Table 12.1 you should be able to verify that

e T)
s(s + 3)(s + 1)

= (K, + K™ + Kste™ + Kye™)u(t). (12.44)

All that remains is to establish a technique for determining the coeffi-
cients (K, K,, K3, .. .) generated by making a partial fraction expansion.
There are four general forms this problem can take. Specifically, the roots
of D(s) are either (1) real and distinct; (2) complex and distinct; (3) real
and repeated; or (4) complex and repeated. Before we consider each situ-
ation in turn, a few general comments are in order.

We used the identity sign = in Eq. 12.43 to empbhasize that expanding
a rational function into a sum of partial fractions establishes an identical
equation. Thus both sides of the equation must be the same for all values
of the variable s. Also, the identity relationship must hold when both sides
are subjected to the same mathematical operation. These characteristics
are pertinent to determining the coefficients, as we will see.

Be sure to verify that the rational function is proper. This check is
important because nothing in the procedure for finding the various Ks will
alert you to nonsense results if the rational function is improper. We pres-
ent a procedure for checking the Ks, but you can avoid wasted effort by
forming the habit of asking yourself, “Is F(s) a proper rational function?”

Partial Fraction Expansion: Distinct Real Roots of D(s)

We first consider determining the coefficients in a partial fraction expan-
sion when all the roots of D(s) are real and distinct. To find a K associated
with a term that arises because of a distinct root of D(s), we multiply both
sides of the identity by a factor equal to the denominator beneath the
desired K. Then when we evaluate both sides of the identity at the root cor-
responding to the multiplying factor, the right-hand side is always the
desired K, and the left-hand side is always its numerical value. For example,

%(s +S)s+12) _ Ky Ky Ky 1245
s(s+8)(s+6) s s+8 s+6 (12.45)

F(s) =

To find the value of K, we multiply both sides by s and then evaluate both
sidesat s = (:

96(s + 5)(s + 12) - K + Kss N Kss
(s +8)(s+6) |;mo ' s+8|,0 §+6|=
or
96(5)(12)
56 - K, = 120. (12.46)

To find the value of K, we multiply both sides by s + 8 and then evaluate
both sides at s = —8:

96(s + 5)(s + 12)
s(s + 6)

s=-¥

_Ky(s + 8)
§

Ki(s +
+ 1(2 + M .
s=-8 (s +6) |i=-s

12.7
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or
96(—3)(4)
— = = —72. 12.47
8)(-2) 2 (1247
Then Kj is
96(s + 5)(s + 12) B _

G+ 9 T Ky = 48. (12.48)

From Eq. 12.45 and the K values obtained,

96(s + 5)(s + 12) 120 48 72
==+ - . (12.49)
s(s + 8)(s +6) s s+6 s+8

At this point, testing the result to protect against computational errors is a
good idea. As we already mentioned, a partial fraction expansion creates
an identity: thus both sides of Eq. 12.49 must be the same for all s values.
The choice of test values is completely open; hence we choose values that
are easy to verify. For example, in Eq. 12.49, testing at either —5 or —12 is
attractive because in both cases the left-hand side reduces to zero.
Choosing —35 yields

120 48 72
S+ S-S =24+ 48 - 24 =
—~+tT-3 4+ 48 — 24 =0,

whereas testing —12 gives

120 48 72
_ 4 — - — = — — —+ } = .
St = 10-8+18=0

Now confident that the numerical values of the various Ks are correct, we
proceed to find the inverse transform:

o {96(s + 5)(s + 12)

= —6r _ 8
s(s + 8)(s + 6) } = (120 + 48e 72 Yu(t). (12.50)

Objective 2—Be able to calculate the inverse Laplace transform using partial fraction expansion and the Laplace
transform table

12.3 Find £(r) if

F(s) =

Answer:  f(1) = Be™ + 272 + e M)u(t).

652 + 265 + 26
(s + D)(s + 2)(s + 3)

12.4 Find f(¢) it

F(s) = 7s* + 63s + 134
(s +3)s +4)(s+5)

Answer:  f(r) = (4e™ + 6e™¥ — 3¢ )u(t).

NOTE: Also try Chapter Problems 12.40(a) and (b).



Partial Fraction Expansion: Distinct Complex

Roots of D(s)

The only difference between finding the coefficients associated with dis-
tinct complex roots and finding those associated with distinct real roots is

that the algebra in the former involves complex numbers. We illustrate by
expanding the rational function:

_ 100(s + 3)
(s + 6)(s*> + 65 + 25)

(12.51)

F(s)

We begin by noting that F(s) is a proper rational function. Next we must
find the roots of the quadratic term s + 65 + 25:

s+ 65+ 25 = (s + 3 — jA)s + 3 + j4). (12.52)
With the denominator in factored form, we proceed as before:

100(s + 3) _
(s + 6)(s® + 65 + 25)

K, K, K,

+ + - . 12.53
s+6 s+3-j4 s+3+j4 ( )
To find K, K5, and K3, we use the same process as before:
100(s + 3) 100(-3)
= =—=-12, 12.54
' 6+ 25)m 25 (12.54)
K. = 100(s + 3) ~100( j4)
PO 3 ez B HB)
=6 — j8 = 10e7/5313 (12.55)
Ka = 100(s + 3) _100(—j4)
TG+ 6)(s+3 = )=y B - jA()8)
=6+ j8 = 10e 1% (12.56)
Then
100(s + 3) _ -1z 10/=5343°
(s +6)(s>+6s+25) s+6 s+3—j4
10/53.13°
PRy (1257)

Again, we need to make some observations. First, in physically realiz-
able circuits, complex roots always appear in conjugate pairs. Second, the
coefficients associated with these conjugate pairs are themselves conju-
gates. Note, for example, that K; (Eq. 12.56) is the conjugate of K,

12.7
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(Eq. 12.55). Thus for complex conjugate roots, you actually need to calcu-
late only half the coefficients.

Before inverse-transforming Eq. 12.57, we check the partial fraction
expansion numerically. Testing at —3 is attractive because the left-hand
side reduces to zero at this value:

-12 N 10 /—53.13° N 10 /53.13°

Fls) == j4 4

I

—4 + 25 /36.87° + 2.5 /—36.87°

—4+ 20+ j1.5+20 - jl5=0.

We now proceed to inverse-transform Eq. 12.57:

55—1{ 100(s + 3)

= 6 —j5313° —(3—4
(s + 6)(s* + 65 + 25)} = (=127 + 107713 g G jaX

+ 10e P33 G iNNYy(r).  (12.58)

In general, having the function in the time domain contain imaginary com-
ponents is undesirable. Fortunately, because the terms involving imaginary
components always come in conjugate pairs, we can eliminate the imagi-
nary components simply by adding the pairs:

10e775313 =G4t 4 (e /53137 p=(+jd)

= 106_3’(e jl4r-53.13%) 4 e~/(4z—53.13°))

= 20e™¥ cos(4t — 53.13°), (12.59)

which enables us to simplify Eq. 12.58:
o1 100(s + 3)
(s + 6)(s* + 65 + 25)

= [~12e™% + 20e™¥ cos(4t — 53.13%)Ju(t). (12.60)

Because distinct complex roots appear frequently in lumped-parameter
linear circuit analysis, we need to summarize these results with a new
transform pair. Whenever D(s) contains distinct complex roots—that is,
factors of the form (s + a@ — jB)(s + a + jB)—a pair of terms of the form

K + K*
s+ta-—jB sta+jB

(12.61)

appears in the partial fraction expansion, where the partial fraction coeffi-
cient is, in general, a complex number. In polar form,

K = |Kle® = |K|/6°, (12.62)



where | K| denotes the magnitude of the complex coefficient. Then
K*=|Kle™ = |K|/-¢°. (12.63)

The complex conjugate pair in Eq. 12.61 always inverse-transforms as

¢! K + K
T ls+a-jB8 s+a+jB

= 2|K|e ™ cos(Bt + 6). (12.64)

In applying Eq. 12.64 it is important to note that K is defined as the coeffi-
cient associated with the denominator term s + o — jB,and K" is defined
as the coefficient associated with the denominator s + a + jB.

v ASSESSMENT PROBLEM

Objective 2—Be able to calculate the inverse Laplace transform using partial fraction expansion and the Laplace

transform table

12.7

Inverse Transforms

12.5 Find f(¢) if Answer: f(¢) = (10e™ — 8.33¢™ sin 12¢)u(r).

B 10(s2 + 119)
(s + 5)(s* + 10s + 169)

F(s)

NOTE: Also try Chapter Problems 12.40(c) and (d).

Partial Fraction Expansion: Repeated Real Roots of D(s)

To find the coefficients associated with the terms generated by a multiple
root of multiplicity », we multiply both sides of the identity by the multiple
root raised to its rth power. We find the K appearing over the factor raised
to the rth power by evaluating both sides of the identity at the multiple root.
To find the remaining (r — 1) coefficients, we differentiate both sides of the
identity (r — 1) times. At the end of each differentiation, we evaluate both
sides of the identity at the multiple root. The right-hand side is always the
desired K, and the left-hand side is always its numerical value. For example,

100(5‘ + 25) K] K2 K3 K4
—t =+ s+ s+ ——. (12,65
s(s + 5) &) (s+5)y (s+5) s+5
We find K as previously described; that is,
100(s + 25) 100(25)
= 2 = — = 20). (12.66)
(s + 5)‘ $=0 125

To find K, we multiply both sides by (s + 5)° and then evaluate both
sides at —5:

100(s + 25 Ki(s +5)°
¥ = M + K2 + K3(S + 5)',(=*5
s s=—5 s §==5
+ Ky(s + 5)? (12.67)
§s==5
100(20)
=5) =K X0+ K, +K3X0+K;X0

= K, = —400. (12.68)

449



450

Introduction to the Laplace Transform

To find K we first must multiply both sides of Eq. 12.65 by (s + 5)*. Next
we differentiate both sides once with respect to s and then evaluate at

s = =5
d | 100(s + 25) _d| Ky(s + 5)
ds s o5 ds s =5

d
+ —[K5]s=-
dsl. 2]6— S

d
+ E[Kz(s + 5)]5=-5

d
+ —[Ku(s + 5)%].—_ 12.
ds[ o5 + 5) =05,  (12.69)

s — (s +25)
100 — = K; = —100. (12.70)

s s==5

To find K4 we first multiply both sides of Eq. 12.65 by (s + 5)*. Next
we differentiate both sides twice with respect to s and then evaluate both
sides at s = —5. After simplifying the first derivative, the second deriva-
tive becomes

d| 25 __d|(s+5)2s—5)
100 ds[ = l:_s = K, ds[ 2 .

F0+ SR s+ 2K + 5)]ees,
or
—40 = 2K, (12.71)
Solving Eq. 12.71 for K, gives
K; = —20. (12.72)
Then
100(s + 25) _ 20 400 100 20

S(S + 5)} s (S + 5)? - (S + 5)2 - s +5 (12.73)

At this point we can check our expansion by testing both sides of
Eq. 12.73 at s = —25. Noting both sides of Eq. 12.73 equal zero when

s = —25 gives us confidence in the correctness of the partial fraction
expansion. The inverse transform of Eq. 12.73 yields

- {100(s + 25)}
‘ s(s + 5)°

= [20 — 200£%™5 — 100te™ — 20e™]u(r). (12.74)
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v ASSESSMENT PROBLEM

Objective 2—Be able to calculate the inverse Laplace transform using partial fraction expansion and the Laplace
transform table

12.6 Find f(¢) if Answer:  f(t) = (1 + 2te™ + 3¢ )u(t).
452 + 75 + 1
sy =& DD
s(s + 1)

NOTE: Also try Chapter Problems 12.41(a), (b), and (d).

Partial Fraction Expansion: Repeated Complex
Roots of D(s)

We handle repeated complex roots in the same way that we did repeated
real roots; the only difference is that the algebra involves complex num-
bers. Recall that complex roots always appear in conjugate pairs and that
the coefficients associated with a conjugate pair are also conjugates, so
that only half the Ks need to be evaluated. For example,

768
(s* + 65 + 25)*
After factoring the denominator polynomial, we write

F(s) = (12.75)

768
(s + 3 — jA)(s + 3 + ja)

F(s) =

K, LK
(s+3—j4? s+3-j4

K] K3
+ :
(s+3+j4? s+3+j4

(12.76)

Now we need to evaluate only K, and K,, because K7 and K3 are conju-
gate values. The value of K is

768

K= —""
L (s + 3+ ja)?

s=—3+j4

7
- 168 = —12. (12.77)

C(8R

The value of K, is

o4 768
Pods|(s+ 3+ 4P fi-aep

. 2(788)
(s + 3 + ja)

s==3+s4

_2(768)
(/8)°

—j3=3/-90°. (12.78)
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From Eqgs. 12.77 and 12.78,

Ki=—12, (12.79)

K =j3=13/90°. (12.80)

&

We now group the partial fraction expansion by conjugate terms to obtain

F(S)=[ —12' L, -12 ]
(s +3—ja4Y (s+3+j4y?

3 /=90° 3 /90°
+ L + L, ) (12.81)
s+3—-j4 s+3+j4
We now write the inverse transform of F(s):
f(t) = [—24te™ cos 4t + 6¢™ cos(4t — 90°)]u(r). (12.82)

Note that if F(s) has a real root a of multiplicity r in its denominator,
the term in a partial fraction expansion is of the form

_K
(s +a)

The inverse transform of this term is

r—=1,—at
SJZ“{ K }:K[ ¢ ). (12.83)

s+ay] (—1)

If F(s) has a complex root of @ + jB of multiplicity r in its denominator,
the term in partial fraction expansion is the conjugate pair

K . K
s+a—jB)Y (G+ta+ j,B)"'

The inverse transform of this pair is

ot
(s+a—jB)y (s+tat+jp)

-1
= |:(2'—|K_|t—1)’ e cos(Bt + 9)j| u(z). (12.84)

Equations 12.83 and 12.84 are the key to being able to inverse-transform
any partial [raction expansion by inspection. One further note regarding
these two equations: In most circuit analysis problems, r is seldom greater
than 2. Therefore, the inverse transform of a rational function can be han-
dled with four transform pairs. Table 12.3 lists these pairs.



TABLE 12.3  Four Useful Transform Pairs

Pair Nature of
Number Roots F(s)
1 Distinct real £
s+a
K
2 Repeated real _(s ¥ ay
. . K K’
< +
3 Distinct complex sta—jB s+ta+ B
K
4 Repeated complex

/ASSESSMENT PROBLEM

) + -2
B B (s +a— ],B?“ (s ta+t ]B)-,
Note: 1n pairs 1 and 2, K is a real quantity, whereas in pairs 3 and 4, K is the complex quantity K| /8.

12.7  Inverse Transforms

f@

Ke™™u(t)
Krte™u(r)
2|K|e™ cos (Bt + O)u(r)

2t|K e cos (Bt + O)u(r)

Objective 2—Be able to calculate the inverse Laplace transform using partial fraction expansion and the Laplace

transform table

12.7 Find f(¢) if Answer: f(2) = (—20te ¥ cost + 20e % sin t)u(t).

40

FO) = v as v 5y

NOTE: Also try Chapter Problem 12.41(e).

Partial Fraction Expansion: Improper Rational Functions

We conclude the discussion of partial fraction expansions by returning
to an observation made at the beginning of this section, namely, that
improper rational functions pose no serious problem in finding inverse
transforms. An improper rational function can always be expanded into
a polynomial plus a proper rational function. The polynomial is then
inverse-transformed into impulse functions and derivatives of impulse
functions. The proper rational function is inverse-transformed by the
techniques outlined in this section. To illustrate the procedure, we use
the function

st + 13s% + 6652 + 200s + 300

F(s) =
() 2+ 95 + 20

(12.85)

Dividing the denominator into the numerator until the remainder is a
proper rational function gives

30s + 100

F(s) = 2+ 4s5 +10 + 5
sS4+ 95 + 20

(12.86)

where the term (30s + 100)/(s*> + 9s + 20) is the remainder.
Next we expand the proper rational function into a sum of
partial fractions:

30s+100 _ 30s+100 _ =20 = 50
$2+9+20 (s+4)(s+5) s+4 s+5

(12.87)

453
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v ASSESSMENT PROBLEMS

Substituting Eq. 12.87 into Eq. 12.86 yields

, 20 50
F(s)=s"+t4s + 10 — + . .
(5) = 5" + 4s 0 14 5+5 (12.88)
Now we can inverse-transform Eq. 12.88 by inspection. Hence
d’s(t)  dé(r)
)= —"+4—+
@ op A 1080

— (20e™ = 50e7"Yu(t). (12.89)

Objective 2—Be able to calculate the inverse Laplace transform using partial fraction expansion and the Laplace

transform table

12.8  Find f(1) if
L (557 + 295 + 32)
FO) = v+ a)

Answer:  f(t) = 58(t) — (3e7% — 2e™*)u(r).

NOTE: Also try Chapter Problem 12.42(c).

12.9 Find f(¢) if
(25 + 8% + 25 — 4)
(s* + 55 + 4)

F(s) =

Answer: f(1) = Zd?i—([t) — 28(t) + e Yu(r).

12.8 Poles and Zeros of F(s)

The rational function of Eq. 12.42 also may be expressed as the ratio of
two factored polynomials. In other words, we may write F(s) as

K(S + Zl)(s + ZZ)“'(S + Zn)

O = G G w6+ o)

(12.90)

where K is the constant ,,/b,,. For example, we may also write the function

8s + 120s + 400

F(s) =
() 2s* + 205% + 70s% + 100s + 48

as

8(s> + 155 + 50)
2(s* + 10s® + 35s% + 50s + 24)

B 4(s + S)(s + 10)
s+ D(s +2)(s + 3)(s + 4)

(12.91)

The roots of the denominator polynomial, that is, —py, —p2, —ps. . . .,
— pm» are called the poles of F(s); they are the values of s at which F(s)
becomes infinitely large. In the function described by Eq. 12.91. the poles
of F(s) are —1, =2, ~3, and —4.

The roots of the numerator polynomial, that is, —z;, —z2, —z3,. . .,
—z,,, are called the zeros of F(s); they are the values of s at which F(s)
becomes zero. In the function described by Eq. 12.91, the zeros of F(s)
are —5 and —10.



In what follows, you may find that being able to visualize the poles
and zeros of F(s) as points on a complex s plane is helpful. A complex
plane is needed because the roots of the polynomials may be complex. In
the complex s plane, we use the horizontal axis to plot the real values of s
and the vertical axis to plot the imaginary values of s.

As an example of plotting the poles and zeros of F(s), consider
the function

_10(s + 5)(s +3 — jA)(s +3 + j4)
T os(s + 10)(s + 6 — j8)(s + 6 + j8)

(12.92)

F(s)

The poles of F(s) are at 0, —10, —6 + /8. and —6 — j8.The zeros arc at —5,
=3 + j4,and =3 — j4. Figure 12.17 shows the poles and zeros plotted on
the s plane, where X’s represent poles and O's represent zeros.

Note that the poles and zeros for Eq. 12.90 are located in the finite s
plane. F(s) can also have either an rth-order pole or an rth-order zero at
infinity. For example, the function described by Eq. 12.91 has a second-
order zero at infinity, because for large values of s the function reduces to
4/.92. and F(s) = Owhen s = oc. In this text, we are interested in the poles
and zeros located in the finite s planc. Therefore, when we refer to the
poles and zeros of a rational function of s, we are referring to the finite
poles and zeros.

12.9 Initial- and Final-Value Theorems

The initial- and final-value theorems are useful because they enable us to
determine from F(s) the behavior of f(¢) at 0 and co. Hence we can check
the initial and final values of f(¢) to see if they conform with known circuit
behavior, before actually finding the inverse transform of F(s).

The initial-value theorem states that

lirgl' f() = lim sF(s), (12.93)
1> s— 00
and the final-value theorem states that

’Il)rglo f@) = }l_l’)l}' sF(s). (12.94)

The initial-value theorem is based on the assumption that f(¢) contains no
impulse functions. In Eq. 12.94, we must add the restriction that the theo-
rem is valid only if the poles of F(s), except for a first-order pole at the
origin, lie in the left half of the s plane.

To prove Eq. 12.93, we start with the operational transform of the
first derivative:

df _ “df _,
P——=r =sF(s) — f(0) = —e " dt. (12.95)
d[ 0" ll[
Now we take the limit as s — 00:
. i} TS
lim [sF(s) — f(07)] = lim d'te S dt. (12.96)
00 ;——)OO. 0

12.9

s plane
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Figure 12.17 A Plotting poles and zeros on the s plane.

« Initial value theorem

<« Final value theorem
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Observe that the right-hand side of Eq. 12.96 may be written as

o
lim(/ a7 edt +/ af ‘“dt)
$§—00 v dt

As s — 00, (df/dt)e™ — 0, hence the second integral vanishes in the limit.
The first integral reduces to f(0*) — f(07), which is independent of s. Thus
the right-hand side of Eq. 12.96 becomes

/ “tdr = £(0%) — £(07). (12.97)
\—’00 0

Because f(07) is independent of s, the left-hand side of Eq. 12.96 may
be written

lim [sF(s) = fO0)] = lm[sF(9] = fO).  (1298)
From Eqs. 12.97 and 12.98,
lim sF(s) = f(0) = lim f(2),
which completes the proof of the initial-value theorem.

The proof of the final-value theorem also starts with Eq. 12.95. Here
we take the limit as s — 0:

hm[s“F(s) - f(0)] = llm)(A_ thC _“dt> (12.99)

The integration is with respect to ¢ and the limit operation is with respect
to s, so the right-hand side of Eq. 12.99 reduces to

daf - > / vdf
3—»0( l dt | dt. (12.100)

Because the upper limit on the integral is infinite, this integral may also be
written as a limit process:

“df _[df
—dt = lim | ——dy, 12.101)
/(r f 1= Jo-dy Y (

where we use y as the symbol of integration to avoid confusion with the
upper limit on the integral. Carrying out the integration process yields

lim [f(r) = f(07)] = lim[f(r)] = F(O7). (12.102)
=00 t—xX
Substituting Eq. 12.102 into Eq. 12.99 gives
lim[sF(s)] = f(07) = Hm[f(1)] = F(O7). (12.103)
5> —G
Because f(07) cancels, Eq. 12.103 reduces to the final-value theorem, namely,
}1_1’1?) sF(s) = ,ll,n@lo f@.
The final-value theorem is useful only if f(oc) exists. This condition is true

only if all the poles of F(s), except for a simple pole at the origin, lie in the
left half of the s plane.



12.9

The Application of Initial- and Final-Value Theorems

To illustrate the application of the initial- and final-value theorems, we
apply them to a function we used to illustrate partial fraction expan-
sions. Consider the transform pair given by Eq. 12.60. The initial-value
theorem gives

iy oF(9) = i 100s7[1 + (3/5)] _
im sF(s) = lim S+ (6/9)][1 + (6/s) + (25/s%)]

’

lim f(t) = [-12 + 20 cos(—53.13°)](1) = —12 + 12 = 0.

—0"

The final-value theorem gives

100s(s + 3
hm sF(s) = lim s(s + 3) =0,
s=0 (s + 6)(s* + 65 + 25)

lim f(r) = lim [-12¢™% + 20e™ cos(4r — 53.13°)]u(t) = 0.
t— —

In applying the theorems to Eq. 12.60, we already had the time-domain
expression and were merely testing our understanding. But the real value of
the initial- and final-value theorems lies in being able to test the s-domain
expressions before working out the inverse transform. For example, con-
sider the expression for V' (s) given by Eq. 12.40. Although we cannot calcu-
late v(r) until the circuit parameters are specified, we can check to see if
V(s) predicts the correct values of v(0*) and v(o0). We know from the
statement of the problem that generated V (s) that ©(0%) is zero. We also
know that v(0) must be zero because the ideal inductor is a perfect short
circuit across the dc current source. Finally, we know that the poles of V(s)
must lie in the left half of the s plane because R, L, and C are positive con-
stants. Hence the poles of sV (s) also lie in the left half of the s plane.

Applying the initial-value theorem yields

S(Idc/c)

I1m sV(s) = s—»oosz[l + 1/(RCs) + 1/(LCS2)]

Applying the final-value theorem gives

5(Z4e /C)
520 + (s/RC) + (1/LC)

llm sV(s) = lim

The derived expression for V(s) correctly predicts the initial and final val-
ues of v(t).

\/ASSESSMENT PROBLEM

Initial- and Final-Value Theorems

Objective 3—Understand and know how to use the initial value theorem and the final value theorem

12.10 Use the initial- and final-value theorems to find Answer: 7,0;4,1;and 0, 0.

the initial and final values of f(¢) in Assessment
Problems 12.4,12.6, and 12.7.

NOTE: Also try Chapter Problem 12.50.
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Practical Perspective

Transient Effects

The circuit introduced in the Practical Perspective at the beginning of the
chapter is repeated in Fig. 12.18 with the switch closed and the chosen
sinusoidal source.

100 uF

10 mH

cos 1207t V 15Q

Figure 12.18 A A series RLC circuit with a 60 Hz
sinusoidal source.

We use the Laplace methods to determine the complete response of the
inductor current, i, (¢). To begin, use KVL to sum the voltages drops around
the circuit, in the clockwise direction:

diy (1) N 1

dt 100 X 107¢
Now we take the Laplace transform of Eq. 12.104, using Tables 12.1 and 12.2:
4IL(S) _ N

s s? + (120m)°
Next, rearrange the terms in Eq. 12.105 to get an expression for /;(s):

100s?

s? + 15005 + 10°][s% + (1207%)]

Note that the expression for I;(s) has two complex conjugate pairs of
poles, so the partial fraction expansion of I;(s) will have four terms:

15i,(¢) + 0.01

t
/iL(x)dx = cos120m7t (12.104)
0

151;(s) + 0.01sI;(s) + 10

(12.105)

Ii(s) = [ (12.106)

Ii(s) =

K, K3 K, K5
- + - + - + - (12.107)
(s + 750 — j661.44) = (s + 750 + j661.44) (s — j120m) = (s + j120m)
Determine the values of K; and K,:
10052
K, = > : = 0.07357 £ —97.89°
[s + 7505 + j661.44][s? + (120m)?] | s=-750+j661.44
(12.108)

100s2
s = 0.018345.£56.61°

% + 15005 + 10°][s + j1207]

s=j120m

Finally, we can use Table 12.3 to calculate the inverse Laplace transform of
Eq. 12.107 to give i;(2):

ir(t) = 147.14¢ 7% cos(661.44t — 97.89°) + 36.69 cos(1207t + 56.61°) mA  (12.109)

The first term of Eq. 12.109 is the transient response, which will decay to
essentially zero in about 7 ms. The second term of Eq. 12.109 is the steady-
state response, which has the same frequency as the 60 Hz sinusoidal source
and will persist so long as this source is connected in the circuit. Note that
the amplitude of the steady-state response is 36.69 mA, which is less than
the 40 mA current rating of the inductor. But the transient response has an



Summary 459

initial amplitude of 147.14 mA, far greater than the 40 mA current rating.

Calculate the value of the inductor current at ¢ = 0:

iz (0) = 147.14(1)cos(—97.89°) + 36.69 cos(56.61°) = —6.21puA

Clearly, the transient part of the response does not cause the inductor current to
exceed its rating initially. But we need a plot of the complete response to deter-
mine whether or not the current rating is ever exceeded, as shown in Fig. 12.19.
The plot suggests we check the value of the inductor current at 1 ms:

i,(0.001) = 147.14¢7°7 cos(—59.82°) + 36.69 cos(78.21°) = 42.6 mA

Thus, the current rating is exceeded in the inductor, at least momentarily. If
we determine that we never want to exceed the current rating, we should
reduce the magnitude of the sinusoidal source. This example illustrates the
importance of considering the complete response of a circuit to a sinusoidal

input, even if we are satisfied with the steady-state response.

i,(H(mA) S0 ]

M H-——— e

30 -
20 A
10
0 / t(ms)

—10 A
=20
-30
—40
-50 J

Figure 12.19 A Plot of the inductor current for the circuit in Fig. 12.18.

NOTE: Access your understanding of the Practical Perspective by trying Chapter
Problems 12.55 and 12.56.

Summary

+ The Laplace transform is a tool for converting time-
domain equations into frequency-domain equations,
according to the following general definition:

PL{F@O)} = A Fe™ de = F(s),

where f(t) is the time-domain expression, and F(s) is
the frequency-domain expression. (See page 430.)

The step function Ku(t) describes a function that expe-
riences a discontinuity from one constant level to
another at some point in time. K is the magnitude of the
jump; if K =1, Ku(t) is the unit step function. (See
page 431.)

+ The impulse function K8(¢) is defined

/ Ké(t)dt = K,
8¢) =0, ¢#0.

K is the strength of the impulse;if K = 1, K(¢) is the
unit impulise function. (See page 433.)
A fanctional transform is the Laplace transform of a

specific function. Important functional transform pairs
are summarized in Table 12.1. (See page 436.)

Operational transforms define the general mathematical
properties of the Laplace transform. Important opera-
tional transform pairs are summarized in Table 12.2.
(See page 437.)

In linear lumped-parameter circuits, F(s) is a rational
function of 5. (See page 444.)

If F(s) is a proper rational function, the inverse trans-
form is found by a partial fraction expansion. (See
page 444.)

If F(s) is an improper rational function, it can be inverse-
transformed by first expanding it into a sum of a poly-
nomial and a proper rational function. (See page 453.)
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« F(s) can be expressed as the ratio of two factored poly-
nomials. The roots of the denominator are called poles
and are plotted as Xs on the complex s plane. The roots
of the numerator are called zeros and are plotted as Os
on the complex s plane. (See page 454.)

» The initial-value theorem states that
li t) = 1 F(s).
[Jim f(5) = lim sF(s)

The theorem assumes that f(¢) contains no impulse
functions. (See page 455.)

Problems

Section 12.2

12.1 Make a sketch of f(¢) for —10s =t = 30s when

f () is given by the following expression:

f(t) = (10 + 100)u(t + 10) — (10t + 50)u(t + S5)
+ (50 — 108)u(sr — 5)
— (150 — 106)u(t — 15) + (10¢ — 250)u(t — 25)
— (10t — 300)u(t — 30)

12.2 Use step functions to write the expression for each

of the functions shown in Fig. P12.2.

Figure P12.2
f®
10
=10 10
(2)
f®
8 —]
l | —1(s)
1 2 3

(b)

The final-value theorem states that
i =1 .
Jim f() = lim, sF(s)

The theorem is valid only if the poles of F(s), except for
a first-order pole at the origin, lie in the left half of the s
plane. (See page 455.)

The initial- and final-value theorems allow us to predict
the initial and final values of f(¢) from an s-domain
expression. (See page 457.)

12.3 Use step functions to write the expression for each

function shown in Fig. P12.3.

Figure P12.3
1

t(s)
(a)
f@
10-—-
10sinwt (0=<1=<2)
0 05 1\1.5/0
..10 ____________
(b)
1@
20
t(s)
ol 5
()

12.4 Step functions can be used to define a window func-

tion. Thus u(r — 1) — u(r — 4) defines a window
1 unit high and 3 units wide located on the time axis
between 1 and 4.



A function f(¢) is defined as follows:

f() =0, t=0
= —=20¢, 0=t=1s
= =20 ls<st=<2s
=2()cos—72It, 2s <=t =<4s;
= 100 — 20¢ 4s =<t <35s
=0, Ss =t < o0,

a) Sketch f(¢) over the interval =1s < ¢ < 6.

b) Use the concept of the window function to write
an expression for f(¢).

Section 12.3

12.5 Explain why the following function generates an
impulse function as € — 0:

€/w

f() R

12.6 The triangular pulses shown in Fig. P12.6 are equiv-
alent to the rectangular pulses in Fig. 12.12(b),
because they both enclose the same area (1/€) and
they both approach infinity proportional to 1/€* as
€ — 0. Use this triangular-pulse representation for
8'(¢) to find the Laplace transform of 5" (¢).

Figure P12.6

3'(1)
+ 2/e
|
!
| €/2 € ;
—e —¢/20 [\ |
|
—2/e’L I
12.7 a) Find the area under the function shown in
Fig. 12.12(a).
b) What is the duration of the function when € = 0?
c) What is the magnitude of f(0) when e = 0?
12.8 In Section 12.3, we used the sifting property of the

impulse function to show that £{5(¢)} = 1. Show

12.9

12.10

12.11

12.12

Problems 461

that we can obtain the same result by finding the
Laplace transform of the rectangular pulse that
exists between +e in Fig. 12.9 and then finding
the limit of this transform as e — 0.

Evaluate the following integrals:

a) [ = /J(t3 + 2)[8(t) + 88(r — 1)]ar.
-1

b) [ = /-tz[é‘(l) + 8(t + 1.5) + 8(t — 3)]dr.
Find f(t) if
@) = % [ m F(w)e'™ do,

and

4 + jw

Flo) = + jo

76(w).
Show that

P{8W()} = s
a) Show that

[oof(r)a’(z — a)dt = —f'(a).

(Hint: Integrate by parts.)
b) Use the formula in (a) to show that

LL8'(1)} = 5.

Sections 12.4-12.5

12.13

12.14

Show that
L F@O)) = FGs + a).
a) Find & isin wt
£ .
. d
b) Find ¥ {— cos wt}.
dt
c) Find £ d—Stztl(t)
ar? ’

d) Check the results of parts (a), (b), and (c) by first
differentiating and then transforming,
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12.15

12.16

12.17

12.18

12.19

12.20

12.21

Introduction to the Laplace Transform

a) Find the Laplace transform of

!
/ xdx
0

by first integrating and then transforming.

b) Check the result obtained in (a) by using the
operational transform given by Eq. 12.33.

Show that

P(fla)} = LF (g)

Find the Laplace transform of each of the following
functions:

a) f(1) = te™;

b) f(r) = sinwr:

¢) F(t) = sin (ot + 6):
d) f(r) =1

e) f(¢) = cosh(z + 0).

(Hint: See Assessment Problem 12.1.)

Find the Laplace transform (when e —0) of the
derivative of the exponential function illustrated in
Fig. 12.8, using cach of the following two methods:

a) First differentiate the function and then find the
transform of the resulting function.

b) Use the operational transform given by Eq.12.23.

Find the Laplace transform of each of the following
functions:
a) f(r) = 40e™M " Iy(e - 3).
b) f(¢) = (5t = 10)[ee(t — 2) — u(t — 4)]
+ (30 = 50)[u(t — 4) — u(t — 8)]
+ (5t = 50)[u(r — 8) — u(t — 10)].

a) Find the Laplace transform of te™.

b) Use the operational transform given by Eq. 12.23
1
to find the Laplace transform of % (te” ).
¢

¢) Check your result in part (b) by first differenti-
ating and then transforming the resulting
expression.

a) Find the Laplace transform of the function illus-
trated in Fig. P12.21.

b) Find the Laplace transform of the first deriva-
tive of the function illustrated in Fig. P12.21.

c¢) Find the Laplace transform of the second deriv-
ative of the function illustrated in Fig. P12.21.

Figure P12.21
@)

10 - ———

-10

12.22

3
a) Findfﬁ{/ e"“dx}.
0~

b) Check the results of (a) by first integrating and
then transforming.

12.23 a) Given that F(s) = £{f(¢)}, show that
_dF(s) _
== 2},
b) Show that
JATF(s) "
(—l) dsn - ‘(’B{[ f(t)}

¢) Use the result of (b) to find £{¢°}, £{tsin Bt},
and ${te™ cosh t}.

12.24 a) Show that if F(s) = £{f(1)}, and {f(¢)/t} is

Laplace-transformable, then

/. Fluw)du = £ {@}

(Hint: Use the defining integral to write

/‘ F(u)du = / (/ f(t)e"”dt) du
Js Js 0°

and then reverse the order of integration.)

b) Start with the result obtained in Problem 12.23(c)
for & {¢sin Br} and use the operational trans-
form given in (a) of this problem to find

£ {sin Bt}.



12.25

Find the Laplace transform for (a) and (b).

a) f(¢) = %(e"" sin wt).

ot
b) f(¢) = / e ™ cos wx dx.
0"

¢) Verify the results obtained in (a) and (b) by first
carrying out the indicated mathematical opera-
tion and then finding the Laplace transform.

Section 12.6

12.26

12.27

12.28

In the circuit shown in Fig. 12.16, the dc current
source is replaced with a sinusoidal source that
delivers a current of 1.2 cos ¢ A. The circuit compo-
nents are R =18, C =625mF, and L = 1.6 H.
Find the numerical expression for V(s).

There is no energy stored in the circuit shown in
Fig. P12.27 at the time the switch is opened.

a) Derive the integrodifferential equations that
govern the behavior of the node voltages v,
and v,.

b) Show that

sTq(s)
C[s* + (R/L)s + (1/LC)]’

Va(s) =

Figure P12.27

The switch in the circuit in Fig. P12.28 has been

open for a long time. At t = 0, the switch closes.

a) Derive the integrodifferential equation that
governs the behavior of the voltage v, fort = 0.

b) Show that

V N VdC/RC
o(s) = s + (I/RC)s + (1/LC)’

c) Show that

V e/ RLC
s[s? + (1/RC)s + (1/LC)]’

I,(s) =

Figure P12,28

Problems 463

12.29 The switch in the circuit in Fig. P12.29 has been in

12.30

12.31

position a for a long time. At ¢+ = 0. the switch
moves instantaneously to position b.

a) Derive the integrodifferential equation that gov-
erns the behavior of the voltage v, for ¢t = 0*.

b) Show that

Vaels + (R/L)]

Vo(s) = — .
[s2 + (R/L)s + (1/LC)]

Figure P12.29
a R L

Vie I)I C~u,

There is no energy stored in the circuit shown in
Fig. P12.30 at the time the switch is opened.

a) Derive the integrodifferential equation that
governs the behavior of the voltage v,,.

b) Show that
Idc/C
s2 + (1/RC)s + (1/LC)

Vi(s) =

c) Show that
S[dc
5>+ (1/RC)s + (1/LC)

1o(s) =

Figure P12,30

=10 4 .
iy
Y _
1y o, cL R —

The switch in the circuit in Fig. P12.31 has been in
position a for a long time. At ¢ = 0, the switch
moves instantaneously to position b.

Al
o

a) Derive the integrodifferential equation that gov-
erns the behavior of the current i, fort = 0%,

b) Show that

laels + (1/RC)]

]1)(S) =

[s*> + (1/RC)s + (1/LC)]

Figure P12.31
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12.32
Pspice
MULTISIM

Introduction to the Laplace Transform

a) Write the two simultaneous differential equa-
tions that describe the circuit shown in Fig. P12.32
in terms of the mesh currents i; and &.

b) Laplace-transform the equations derived in (a).
Assume that the initial energy stored in the cir-
cuit is zero.

c) Solve the equations in (b) for /;(s) and I,(s).

Figure P12.32
60 Q) 2
YL ®-
H

SH
* A
1

0
300w V)  ~=35H /> 4051§
i i
[ ]

Section 12.7
12.33 Find v(t) in Problem 12.26.
12.34 The circuit parameters in the circuit in Fig. P12.27
e are R = 2500 Q; L = 500 mH; and C = 0.5 puF. If
MBI (1) = 15 mA, find va(t).
12.35 The circuit parameters in the circuit in Fig. P12.28
e gre R = 5k; L = 200 mH; and C = 100 nF. If V4
MM is 35V, find
a) v,(¢t)fort =0
b) i,(t) fort = 0
12.36 The circuit parameters in the circuit in Fig. P12.29
are R=250Q, L =50mH, and C =5uF. If
Vae = 48 V, find v,(t) for ¢ = 0.
12.37 The circuit parameters in the circuit seen in
eseice  Fig. P12.30 have the following values: R = 1 kQ,
WM = 12.5H, C = 2 uF, and Iy, = 30 mA.
a) Find v,(¢) for¢ = 0.
b) Find i (¢) fort = 0.
¢) Does your solution for i,(f) make sense when
t = 0? Explain.
12.38 The circuit parameters in the circuit in Fig. P12.31
e are R = 500 Q, L = 250 mH, and C = 250 nF. If
MM e = SmA, find i (¢) for t = 0.
12.39 Use the results from Problem 12.32 and the circuit

shown in Fig P12.32 to

a) Find {(#) and i(¢).

b) Find {;(c0) and i,(00).

¢) Do the solutions for i; and i; make sense?
Explain.

12.40 Find f(¢) for each of the following functions:
8s2 + 37s + 32
F(s) = .
D PO =D+ 06+ 9)
135 + 1345 + 3925 +
b) F(s) = ) 32 . 92s 288‘
s(s + 2)(s* + 10s + 24)
20s* + 165 +
0 F(s) = s 2l6s 12 .
(s + D(s*+ 25 +5)
250(s + 7)(s + 14
PN ) CRB L)

s(s* + 14s + 50)

12.41 Find f(r) for each of the following functions.

a) F(s) = %
50(s + 5

b)  F(s) = ———s(i‘:l)z) .

ooy = 100G +3)

©) (s) = s(s2 + 6s + 10)
S(s + 2)?

d) F(S) = m

e) F(s) = 400

s(s* + 4s + 5)%

12.42 Find f(t) for each of the following functions.

s? + 38s +
a)  F(s) = S5s“ + 38s + 80

2 +6s+8
10s? + 512s + 7186
b F(s) =
) ) T T s 1 625
34562 — - 100
0 F(s) = s s 50s '

s+ 155 + 50

12.43 Find f(¢) for each of the following functions.

o) = 100(s + 1)

2) (s) = s2(s? + 25 + 5)
500

b) F(S) = m



12.44

12.45
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Derive the transform pair given by Eq. 12.64.

a) Derive the transform pair given by Eq. 12.83.
b) Derive the transform pair given by Eq. 12.84.

Sections 12.8-12.9

12.46

12.47

12.48

12.49

a) Use the initial-value theorem to find the initial
value of v in Problem 12.26.

b) Can the final-value theorem be used to find the
steady-state value of v? Why?

Use the initial- and final-value theorems to check
the initial and final values of the current and volt-
age in Problem 12.28.

Use the initial- and final-value theorems to check
the initial and final values of the current and volt-
age in Problem 12.30.

Use the initial- and final-value theorems to check
the initial and final values of the current in
Problem 12.31.

12.50

12.51

12.52

12.53

Problems 465

Apply the initial- and final-value theorems to each
transform pair in Problem 12.40.

Apply the initial- and final-value theorems to each
transform pair in Problem 12.41.

Apply the initial- and final-value theorems to each
transform pair in Problem 12.42.

Apply the initial- and final-value theorems to each
transform pair in Problem 12.43.

Sections 12.1-12.9

12.54

12.55

12.56

a) Use phasor circuit analysis techniques from
Chapter 9 to determine the steady-state expres-
sion for the inductor current in Fig. 12.18.

b) How does your result in part (a) compare to the
complete response as given in Eq. 12.109?

Find the maximum magnitude of the sinusoidal
source in Fig. 12.18 such that the complete response
of the inductor current does not exceed the 40 mA
current rating at = 1 ms.

Suppose the input to the circuit in Fig 12.18 is a
damped ramp of the form Kte V. Find the
largest value of K such that the inductor current
does not exceed the 40 mA current rating.




