Frequency
Response

Dost thou love Life? Then do not squander Time; for that is the stuff

Life is made.
—Benjamin Franklin

: Enhancing Your Career

Career in Control Systems

Control systems are another area of electrical engineering where circuit
analysis is used. A control system is designed to regulate the behavior
of one or more variables in some desired manner. Control systems play
major roles in our everyday life. Household appliances such as heat-
ing and air-conditioning systems, switch-controlled thermostats, wash-
ers and dryers, cruise controllers in automobiles, elevators, traffic
lights, manufacturing plants, navigation systems—all utilize control
systems. In the aerospace field, precision guidance of space probes, the
wide range of operational modes of the space shuttle, and the ability
to maneuver space vehicles remotely from earth all require knowledge
of control systems. In the manufacturing sector, repetitive production
line operations are increasingly performed by robots, which are pro-
grammable control systems designed to operate for many hours with-
out fatigue.

Control engineering integrates circuit theory and communication
theory. It is not limited to any specific engineering discipline but may
involve environmental, chemical, aeronautical, mechanical, civil, and
electrical engineering. For example, a typical task for a control system
engineer might be to design a speed regulator for a disk drive head.

A thorough understanding of control systems techniques is essen-
tial to the electrical engineer and is of great value for designing con-
trol systems to perform the desired task.

A welding robot. © Vol. 1 PhotoDise/
Getty Images
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The frequency response of a circuit
may also be considered as the
variation of the gain and phase

with frequency.

X(w) Linear network Y(w)
—_— —l
Input H(w) Output

Figure 14.1

A block diagram representation of a linear

network.

In this context, X(w) and ¥(w) denote
the input and output phasors of a net-
work: they should not be confused
with the same symbolism used for re-
actance and admittance. The multiple
usage of symbols is conventionally
permissible due to lack of enough let-
ters in the English language to express
all circuit variables distinctly.

Chapter 14  Frequency Response

141  Introduction

In our sinusoidal circuit analysis, we have learned how to find volt-
ages and currents in a circuit with a constant frequency source. If
we let the amplitude of the sinusoidal source remain constant and
vary the frequency, we obtain the circuit’s frequency response. The
frequency response may be regarded as a complete description of
the sinusoidal steady-state behavior of a circuit as a function of
frequency.

The frequency response of a circuit is the variation in its behavior with
change in signal frequency.

The sinusoidal steady-state frequency responses of circuits are of
significance in many applications, especially in communications and
control systems. A specific application is in electric filters that block
out or eliminate signals with unwanted frequencies and pass signals of
the desired frequencies. Filters are used in radio, TV, and telephone
systems to separate one broadcast frequency from another.

We begin this chapter by considering the frequency response of
simple circuits using their transfer functions. We then consider Bode
plots, which are the industry-standard way of presenting frequency
response. We also consider series and parallel resonant circuits and
encounter important concepts such as resonance, quality factor, cutoft
frequency, and bandwidth. We discuss different kinds of filters and net-
work scaling. In the last section, we consider one practical application
of resonant circuits and two applications of filters.

14.2 ' Transfer Function

The transfer function H(w) (also called the network function) is a
useful analytical tool for finding the frequency response of a circuit.
In fact, the frequency response of a circuit is the plot of the circuit’s
transfer function H(w) versus w, with @ varying from @ = 0 to
w = 99,

A transfer function is the frequency-dependent ratio of a forced
function to a forcing function (or of an output to an input). The idea
of a transfer function was implicit when we used the concepts of
impedance and admittance to relate voltage and current. In general,
a linear network can be represented by the block diagram shown in
Fig. 14.1.

The transfer function H(w) of a circuit is the frequency-dependent
ratio of a phasor output ¥(w) (an element voltage or current) to a phasor
input X(w) (source voltage or current).

Thus,

_ Y(w)

H®) = X()

(14.1)
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assuming zero initial conditions. Since the input and output can be either
voltage or current at any place in the circuit, there are four possible trans-
fer functions:

) V,(w)
H(w) = Voltage gain = ——— (14.2a)
Vi(w)
: ()
H(w) = Current gain = (14.2b)
I,‘({U}
, Vo(w)
H(w) = Transfer Impedance = (14.2¢)
];'(-w)
. : I(w)
H(w) = Transfer Admittance = — (14.2d)

."((UJ

where subscripts i and o denote input and output values. Being a complex
quantity, H(w) has a magnitude H(w) and a phase ¢; that is, H(w) =
H(w)/®.

To obtain the transfer function using Eq. (14.2), we first obtain the
frequency-domain equivalent of the circuit by replacing resistors,
inductors, and capacitors with their impedances R, jwL, and 1/jwC. We
then use any circuit technique(s) to obtain the appropriate quantity in
Eq. (14.2). We can obtain the frequency response of the circuit by plot-
ting the magnitude and phase of the transfer function as the frequency
varies. A computer is a real time-saver for plotting the transfer function.

The transfer function H(w) can be expressed in terms of its numer-
ator polynomial N(w) and denominator polynomial D(w) as

(14.3)

where N(w) and D(w) are not necessarily the same expressions for the
input and output functions, respectively. The representation of H(w) in
Eq. (14.3) assumes that common numerator and denominator factors in
H(w) have canceled, reducing the ratio to lowest terms. The roots of
N(w) = 0 are called the zeros of H(w) and are usually represented as
Jjw = 2y, 25, .... Similarly, the roots of D(w) = 0 are the poles of H(w)
and are represented as jw = py, ps, ....

A zero, as a root of the numerator polynomial, is a value that results in
a zero value of the function. A pole, as a root of the denominator poly-
nomial, is a value for which the function is infinite.

To avoid complex algebra, it is expedient to replace jw temporarily
with s when working with H(w) and replace s with jw at the end.

615

Some authors use H(jw) for transfer
instead of H(w), since w and j are an
inseparable pair.

A zero may also be regarded as the
value of s = jw that makes H(s) zero,
and a pole as the value of s = jw that
makes H(s) infinite.

For the RC circuit in Fig. 14.2(a), obtain the transfer function V,/V,
and its frequency response. Let v, = V), coswi.

Solution:

The frequency-domain equivalent of the circuit is in Fig. 14.2(b). By
voltage division, the transfer function is given by

VvV, 1/jeC 1

H =2 = —
@ =3 TR+ 1/jaC 1+ jwRC

Example 14.1



616

0 “o=

-

(a)

450 |-\

¥e

Chapter 14  Frequency Response
R R
MMV AN
+ -
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C == v, V, C_") ,m.%(ﬂ ——3

(a) (b)
Figure 14.2
For Example 14.1: (a) time-domain RC circuit,
(b) frequency-domain RC circuit.

Comparing this with Eq. (9.18e), we obtain the magnitude and phase of
H(w) as
T SR ——
V1 + (0/wy) g
where w, = 1/RC. To plot H and ¢ for 0 < w < ¢, we obtain their
values at some critical points and then sketch.

Atw=0,H=1land ¢ =0. Atw =%, H=0and ¢ = —90°.
Also, at w = wy, H = 1/V2 and ¢ = —45°. With these and a few
more points as shown in Table 14.1, we find that the frequency response
is as shown in Fig. 14.3. Additional features of the frequency response

in Fig. 14.3 will be explained in Section 14.6.1 on lowpass filters.
_()00 __________________
P For Example 14.1.
(b)

Figure 14.3 w/®y H ¢ w/wy H ¢
Frequency response of the RC circuit: 0 1 0 10 0.1 —84°
(a) amplitude response, (b) phase 1 0.71 —45° 20 0.05 —g7°
L 2 0.45 —63° 100 0.01 ~89°

3 0.32 —72° o 0 —90°
lLPractlce Problem 14.1 Obtain the transfer function V,/V, of the RL circuit in Fig. 14.4,

.©

Figure 14.4

RL circuit for Practice Prob. 14.1.

assuming v, = V,, coswt. Sketch its frequency response.

Answer: jolL/(R + jwL); see Fig. 14.5 for the response.

H A b A
i1 90°
0.707 p---
45° .. 2
0. _R w 0 _R w
=T Wo=T

(a)

Figure 14.5
Frequency response of the RL circuit in Fig. 14.4.

(b)
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For the circuit in Fig. 14.6, calculate the gain I(w)/1;(w) and its poles
and zeros.

Solution:
By current division,

L(w) = 4 + 2w 1(w)
AN T4+ Do + 1/j050
or
Lw)  jOSo@ +j20) s +2)

L 1+20+ (o} sS+2s+1
The zeros are at
s(s +2)=20 = zp =0,z = =2
The poles are at
S+2+1=(+17>2=0

Thus, there is a repeated pole (or double pole) at p = —1.

Example 14.2

- 1 i ()

i(6) ——05F

Figure 14.6
For Example 14.2.

Find the transfer function V,(w)/I;(w) for the circuit in Fig. 14.7.
Obtain its zeros and poles.

) 10(s + 1)(s + 3)

Answer: < ,§ = jw; zeros: —1, —3; poles: —0.683,
s+ 8+ 5

—7.317.

143 | The Decibel Scale

It is not always easy to get a quick plot of the magnitude and phase of
the transfer function as we did above. A more systematic way of obtain-
ing the frequency response is to use Bode plots. Before we begin to
construct Bode plots, we should take care of two important issues: the
use of logarithms and decibels in expressing gain.

Since Bode plots are based on logarithms, it is important that we
keep the following properties of logarithms in mind:

1. log PP, = log P, + log P,
2 ]0gP./P2 = ]0gP1 - lOgPp_
3. logP" =nlogP

4. logl =0

In communications systems, gain is measured in bels. Historically,
the bel is used to measure the ratio of two levels of power or power
gain G; that is,

P,
G = Number of bels = log;, P— (14.4)
|

Practice Problem 14.2 |

i;(1)

10 Q 6Q

T 0.1F 2H
Figure 14.7
For Practice Prob. 14.2.

AOIES)

Historical note: The bel is named after
Alexander Graham Bell, the inventor of
the telephone.
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Historical

Alexander Graham Bell (1847-1922) inventor of the telephone,
was a Scottish-American scientist.

Bell was born in Edinburgh, Scotland, a son of Alexander Melville
Bell, a well-known speech teacher. Alexander the younger also became
a speech teacher after graduating from the University of Edinburgh and
the University of London. In 1866 he became interested in transmit-
ting speech electrically. After his older brother died of tuberculosis, his
father decided to move to Canada. Alexander was asked to come to
Boston to work at the School for the Deaf. There he met Thomas A.
Watson, who became his assistant in his electromagnetic transmitter
experiment. On March 10, 1876, Alexander sent the famous first tele-
phone message: “Watson, come here 1 want you.” The bel, the loga-
rithmic unit introduced in Chapter 14, is named in his honor.

v, R Network R, § v,

Py Py
Figure 14.8

Voltage-current relationships for a four-
terminal network.

The decibel (dB) provides us with a unit of less magnitude. It is 1/10th of
a bel and is given by

P,
GdB =10 IOg]() 'P-' (14.5)
|

When P, = P,, there is no change in power and the gain is 0 dB. If
P, = 2Py, the gain is

Gy = 10log;p 2 = 3dB (14.6)
and when P, = 0.5P,, the gain is
Ggg = 10 log;y 0.5 = —3dB (14.7)

Equations (14.6) and (14.7) show another reason why logarithms are
greatly used: The logarithm of the reciprocal of a quantity is simply
negative the logarithm of that quantity.

Alternatively, the gain G can be expressed in terms of voltage
or current ratio. To do so, consider the network shown in Fig. 14.8. If
P, is the input power, P is the output (load) power, R, is the input
resistance, and R, is the load resistance, then P, = 0.5V7/R, and
P> = 0.5V3/R,, and Eq. (14.5) becomes

. 2 V3/R
Gy = 10 logq s 10 log)o —5

| Vi/R

101 (I.-:): + 101 Ry
= o — - O n—
0g10 % 0g40 R

(14.8)

i Vs R
Gyg = 20 log,y— — 10 log,, — (14.9)

For the case when R, = R,, a condition that is often assumed when
comparing voltage levels, Eq. (14.9) becomes

Vs
Gd.B = 20 ]Og]g? (14.10)
1
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Instead, if P, = I3R,; and P, = I3R,, for R; = R,, we obtain

1
Gas = 20 logyp !w (14.11)

1
Three things are important to note from Egs. (14.5), (14.10), and (14.11):

1. That 10 log,, is used for power, while 20 log;, is used for voltage
or current, because of the square relationship between them
(P = V*/R = I’R).

2. That the dB value is a logarithmic measurement of the ratio of one
variable to another of the same type. Therefore, it applies in
expressing the transfer function A in Eqs. (14.2a) and (14.2b),
which are dimensionless quantities, but not in expressing H in
Egs. (14.2¢) and (14.2d).

3. It is important to note that we only use voltage and current mag-
nitudes in Eqs. (14.10) and (14.11). Negative signs and angles will
be handled independently as we will see in Section 14.4.

With this in mind, we now apply the concepts of logarithms and deci-
bels to construct Bode plots.

144  Bode Plots

Obtaining the frequency response from the transfer function as we
did in Section 14.2 is an uphill task. The frequency range required in
frequency response is often so wide that it is inconvenient to use a
linear scale for the frequency axis. Also, there is a more systematic
way of locating the important features of the magnitude and phase
plots of the transfer function. For these reasons, it has become stan-
dard practice to plot the transfer function on a pair of semilogarith-
mic plots: the magnitude in decibels is plotted against the logarithm
of the frequency: on a separate plot, the phase in degrees is plotted
against the logarithm of the frequency. Such semilogarithmic plots of
the transfer function—known as Bode plots—have become the indus-
try standard.

Bode plots are semilog plots of the magnitude (in decibels) and phase
(in degrees) of a transfer function versus frequency.

Bode plots contain the same information as the nonlogarithmic plots
discussed in the previous section, but they are much easier to construct,
as we shall see shortly.

The transfer function can be written as

H=H/¢p = He'® (14.12)
Taking the natural logarithm of both sides,
mH=IH+Ine?’=mnH+jb (14.13)

Thus, the real part of In H is a function of the magnitude while the
imaginary part is the phase. In a Bode magnitude plot, the gain

Hd[.] =20 |0gm H (14.14}

619

Historical note: Named after Hendrik
W. Bode (1905-1982), an engineer
with the Bell Telephone Laboratories,
for his pioneering work in the 1930s
and 1940s.
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TABLE 14.2

Specific gain and their decibel
values.*

Magnitude H 20 log,, H (dB)
0.001 —60
0.01 —40
0.1 —-20
0.5 -6
1/V2 -3

1 0
V2 3
2 6

10 20
20 26
100 40
1000 60

* Some of these values are approximate.

| Theoriginiswherew = 1orlogw = 0
and the gain is zero.

A decade is an interval between two
frequencies with a ratio of 10; e.g.,
between wg and 10w, or between
10 and 100 Hz. Thus, 20 dB/decade
means that the magnitude changes
20 dB whenever the frequency
changes tenfold or one decade.

Chapter 14  Frequency Response

is plotted in decibels (dB) versus frequency. Table 14.2 provides a few
values of H with the corresponding values in decibels. In a Bode phase
plot, ¢ is plotted in degrees versus frequency. Both magnitude and
phase plots are made on semilog graph paper.

A transfer function in the form of Eq. (14.3) may be written in terms
of factors that have real and imaginary parts. One such representation
might be

K(jo)™' (1 + jo/z)l + j2¢ /w0, + (jo/w)’]

H(w) = ) s " >
(1 +jo/p)[l + j2irw/w, + (jo/w,)]

(14.15)
which is obtained by dividing out the poles and zeros in H(w). The
representation of H(w) as in Eq. (14.15) is called the standard form.
H(w) may include up to seven types of different factors that can appear
in various combinations in a transfer function. These are:

1. A gain K

2. A pole (jw) " or zero (jw) at the origin

3. A simple pole 1/(1 + jw/p,) or zero (1 + jw/z)

4. A quadratic pole 1/[1 + 2Lrw/w, + (jo/w,)?] or zero
[l + j20iw/wy + (jo/w)’]

In constructing a Bode plot, we plot each factor separately and then
add them graphically. The factors can be considered one at a time and
then combined additively because of the logarithms involved. It is this
mathematical convenience of the logarithm that makes Bode plots a
powerful engineering tool.

We will now make straight-line plots of the factors listed above.
We shall find that these straight-line plots known as Bode plots approx-
imate the actual plots to a reasonable degree of accuracy.

Constant term: For the gain K, the magnitude is 20 log;, K and the
phase is 0°; both are constant with frequency. Thus, the magnitude and
phase plots of the gain are shown in Fig. 14.9. If K is negative, the
magnitude remains 20 log, |K| but the phase is *=180°.

Pole/zero at the origin: For the zero (jw) at the origin, the magni-
tude 1s 20 log,( @ and the phase is 90°. These are plotted in Fig. 14.10,
where we notice that the slope of the magnitude plot is 20 dB/decade,
while the phase is constant with frequency.

The Bode plots for the pole (jw) ' are similar except that the slope
of the magnitude plot is —20 dB/decade while the phase is —90°. In
general, for (jw)", where N is an integer, the magnitude plot will have
a slope of 20N dB/decade, while the phase is 90N degrees.

H
20 log oK ¢ A
0
I I > L L >
0.1 1 10 100 w 0.1 1 10 100 o
(b)
Figure 14.9

Bode plots for gain K: (a) magnitude plot, (b) phase plot.
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Simple pole/zero: For the simple zero (1 + jw/z,), the magnitude is
20 logq |1 + jw/z,| and the phase is tan~' w/z,. We notice that

(14.17)

Jo
]'!l”.; = 2() |0g|(, B : = 20 Iog][]l =0 (14.I6}
as w—0
r’w w
[.{LEB = 20 I()g“} || At = 20 10};'.'“ =
=

=)
as w — ©

showing that we can approximate the magnitude as zero (a straight line
with zero slope) for small values of @ and by a straight line with slope
20 dB/decade for large values of . The frequency w = z; where the two
asymptotic lines meet is called the corner frequency or break frequency.
Thus the approximate magnitude plot is shown in Fig. 14.11(a), where
the actual plot is also shown. Notice that the approximate plot is close
to the actual plot except at the break frequency, where w = z; and the
deviation is 20 log;o|(1 + j1)| = 20 log;, V2 = 3 dB.
The phase tan '(w/z,) can be expressed as

¢ = lan"l(iu) =
=]

As a straight-line approximation, we let ¢ = 0 for v = z,/10, ¢ = 45°
for @ = z;, and ¢ = 90° for w = 10z,. As shown in Fig. 14.11(b)
along with the actual plot, the straight-line plot has a slope of 45° per
decade.

The Bode plots for the pole 1/(1 + jw/p,) are similar to those in
Fig. 14.11 except that the corner frequency is at w = p;, the magnitude
has a slope of —20 dB/decade, and the phase has a slope of —45° per
decade.

0, w=20
45°, w = z;

90°, w— =

(14.18)

Quadratic pole/zero: The magnitude of the quadratic pole 1/[1 +
_f2§2w/(0,, + (jw/m”)z] iS _20 logt(]ll +j2§3w/m,, L (Jimfwn)2| a]ld
the phase is —tan~'(2{,w/w,)/(1 — w*/w}). But

2 .,_, r . 3
Pt +('"") | = P

n l‘.[}”

i'id[; = =20 I(]g|”

as w—0
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The special case of dc (w = 0) does
not appear on Bode plots because log
0 = —e, implying that zero frequency
is infinitely far to the left of the origin of
Bode plots.

L 0.1
Slope = 20 dB/decade

(a)

A

90°

0° L | I »

0.1 1.0 10 @

(b)

Figure 14.10
Bode plot for a zero (jw) at the origin:
(a) magnitude plot, (b) phase plot.

(14.19)
¢ A
T e o e e e
H Exact
Approximate : Approximate
1 ] : 450 fommmmmmmm i . 45°/decade
1 L » 0° >
0.1z, 2 3dB 10z, o 0.1z, z 10z, w
(a) (b)

Figure 14.11
Bode plots of zero (1 + jw/z): (a) magnitude plot, (b) phase plot.



Zeros cause an increase in slope, while
poles cause a decrease. By starting with
the low-frequency asymptote of the
Bode plot, moving along the frequency
axis, and increasing or decreasing the
slope at each comer frequency, one can
sketch the Bode plot immediately from
the transfer function without the effort
of making individual plots and adding
them. This procedure can be used once
you become proficient in the one
discussed here.

Digital computers have rendered
the procedure discussed here almost
obsolete. Several software packages
such as PSpice, MATLAB, Mathcad,
and Micro-Cap can be used to gener-
ate frequency response plots. We will
discuss PSpice later in the chapter.
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and
205w jw '\ @
l{'!‘”; = —20 IOgm‘l - 2 ! g‘_ o (’I_) ‘ = —40 Iog”. e
w,, w, w,
as w-— ™
(14.20)
Thus, the amplitude plot consists of two straight asymptotic lines: one
with zero slope for @ < w, and the other with slope —40 dB/decade
for @ > w,, with @, as the corner frequency. Figure 14.12(a) shows
the approximate and actual amplitude plots. Note that the actual plot
depends on the damping factor ¢, as well as the corner frequency w,,.
The significant peaking in the neighborhood of the corner frequency
should be added to the straight-line approximation if a high level of
accuracy is desired. However, we will use the straight-line approxima-
tion for the sake of simplicity.
H A
20 =005~ ¢ 4
=02/ 0°
15, =047
0 Jlg‘- o C =
$H=0.707_% T 5=0707
5L=15 -90° :
20 £, =04 ~90°/dec
40 dB/dec 5=02
{1 =(.05
-40 > -180° 2 ' >
0.0lw, 0.1w, w®, 10w, 100w, @ 0.01w, 0.1lw, w, 10w, 100w,
(a) (b)
Figure 14.12
Bode plots of quadratic pole [1 + j2{w/w, — o’ /w27 (a) magnitude plot, (b) phase plot.
The phase can be expressed as
There is another procedure for obotain- 00 w=0
ing Bode plots that is faster and perhaps Y Eggﬂl/ﬂ)y 9(}‘0 B 1421
more efficient than the one we have just ¢ = —tan i e ©=w, (14.21)
discussed. It consists in realizing that & —180°%, w—

The phase plot is a straight line with a slope of —90° per decade starting
at w,/10 and ending at 10w, as shown in Fig. 14.12(b). We see again
that the difference between the actual plot and the straight-line plot is due
to the damping factor. Notice that the straight-line approximations for both
magnitude and phase plots for the quadratic pole are the same as those
for a double pole, i.e. (1 +jw/mn)_2. We should expect this because
the double pole (1 + jw/w,) ? equals the quadratic pole 1/[1 +
j2lw/w, + (jo/w,)’] when £, = 1. Thus, the quadratic pole can be
treated as a double pole as far as straight-line approximation is concerned.
For the quadratic zero [l + j2{ ,w/w; + {_,icu/wk}z], the plots in
Fig. 14.12 are inverted because the magnitude plot has a slope of
40 dB/decade while the phase plot has a slope of 90° per decade.
Table 14.3 presents a summary of Bode plots for the seven factors.
Of course, not every transfer function has all seven factors. To sketch
the Bode plots for a function H(w) in the form of Eq. (14.15), for exam-
ple, we first record the corner frequencies on the semilog graph paper,
sketch the factors one at a time as discussed above, and then combine
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TABLE 14.3

Summary of Bode straight-line magnitude and phase plots.

Factor Magnitude Phase
20 log o K
K
00
. Vi ,
e
20N dB/decade 0N°
()™
1 w «
1 | ;, ::
(jw)"
=20N dB/decade _QON®
90N
R 20N dB/decade
Jay
(4]
z 0°
L 1 >
Z z 10z w
z 10
P
P 10 P 10p
] L > 1 L | >
_— 0°
(1 + jo/p) ! M
—20N dB/decade _90N®©
180N°
40N dB/decade
2jw jw \ Y
[1 p A9, (’—)J
w” wﬂ
g 0°
o L 1 >
Wy w wy, ay, |0|‘.|.l‘,l
10
(IJJ'. wk
> 10 Wy 10w,
(2]
0° w
1
[1+ 2jwl/wy + (jw/w) T
—40N dB/decade

—180N°
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additively the graphs of the factors. The combined graph is often drawn
from left to right, changing slopes appropriately each time a corner fre-
quency is encountered. The following examples illustrate this procedure.

. Example 14.3

H(dB) A

20 f---mmmmnmee-

Construct the Bode plots for the transfer function
B 200w
"~ (jw + 2)(jo + 10)

H(w)

Solution:
We first put H(@) in the standard form by dividing out the poles and
zeros. Thus,
_ 10jw
(1 + jw/2)(1 + jw/10)

10]jo|
T+ jw/2|[1 + jw/10

H(w)

|/90° —tan ' @/2 — tan ' w/10

Hence, the magnitude and phase are

Has = 20 1og1010 + 20 log;o|jw| — 20 logyo |1 +“§‘
20 logig |1 +ﬂ‘"
0L10 10

w w
=90° —tan ' — —tan' —
¢ 2 10
We notice that there are two corner frequencies at @ = 2, 10. For both
the magnitude and phase plots, we sketch each term as shown by the
dotted lines in Fig. 14.13. We add them up graphically to obtain the
overall plots shown by the solid curves.

i 20 log;10
o e i B W

Figure 14.13

(b)

For Example 14.3: (a) magnitude plot, (b) phase plot.
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Draw the Bode plots for the transfer function

_5(w +2)
M) = ot + 10)

Answer: See Fig. 14.14.

.
_,-—“'\2nlogm|+%|
12 -7 10 100
1-" 1 1 -
b -

0
0.1

H (dB) 4
20

~

=20 F

b A w
090° |- tan &

0°

40 _/\

Figure 14.14
For Practice Prob. 14.3: (a) magnitude plot, (b) phase plot.

Practice Problem 14.3 |

Obtain the Bode plots for
jow + 10
Hw) = —5
Jo(jo +5)

Solution:
Putting H(w) in the standard form, we get

0.4(1 + jw/10)

M= a1+ juf 7

From this, we obtain the magnitude and phase as

HdB =20 10g100.4 + 20 ]oglu

Jjo :
1 +—| =201
10‘ 080 | jw]

— 40 lOgln

I+ “E‘
5
w w
=0°+tan ' — —90°— 2tan"' —
¢ 10 5
There are two comer frequencies at w = 5, 10 rad/s. For the pole with cor-

ner frequency at w = 5, the slope of the magnitude plot is —40 dB/decade
and that of the phase plot is —90° per decade due to the power of 2. The

Example 14.4
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magnitude and the phase plots for the individual terms (in dotted lines)
and the entire H(jw) (in solid lines) are in Fig. 14.15.

H (dB) | 20 Iog",‘l +£6’| 5
20 . 20logjg 1. A
i i | jeol e 90° -
S 20logio0.4 -~ \
= = 1 1 > —__,,.—"’ Ian]%
_____________________________ 50 100 @ 0° P L L : N
B .40 log : 0.1 0.5 -.1 5 10 50 100
20 0 BT ] g
T -90° 5. o = A R S S S i I"‘:')
B ; —2tan”!5
—90°/decade : a5
-40
SEpE e TSsunes
40 dB/decade -~ —45°/decade

45°/decade

Figure 14.15
Bode plots for Example 14.4: (a) magnitude plot, (b) phase plot.

Dractlce Problem 14.4 Sketch the Bode plots for
50 j
(jo + 4)(jo + 10)°

H(w) =

Answer: See Fig. 14.16.

H(dB) A
20 - =
20 logyg | jwl
0.1 1 -3 10 40 100
0 - L 1— 1 1 | >
."" = “‘ ©
D it o S MemeaEse w
—20 log,,8 ;
— 401 ———
40 B0 T w10l

1
20 logjo 7
(@ 1+ jwi4l

Figure 14.16
For Practice Prob. 14.4: (a) magnitude plot, (b) phase plot.

Draw the Bode plots for

S

H(s) = ————
(s) s2 + 125 + 100

Solution:

1. Define. The problem is clearly stated and we follow the
technique outlined in the chapter.

2. Present. We are to develop the approximate bode plot for the
given function, H(s).

3. Alternative. The two most effective choices would be the
approximation technique outlined in the chapter, which we will
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use here, and MATLAB, which can actually give us the exact
Bode plots.
4. Attempt. We express H(s) as

1/100(1 + jo)
1 + jw1.2/10 + (jo/10)*

For the quadratic pole, w, = 10 rad/s, which serves as the
corner frequency. The magnitude and phase are

Hyg = —20 logyo 100 + 20 log,o |1 + jo|

H(w) =

jwl2 @
=30 Jogis |l + ——
0logio 10 100
1.2/10
¢=0"+tan 'w — tan_][#}
I —w /100

Figure 14.17 shows the Bode plots. Notice that the quadratic
pole is treated as a repeated pole at wy. that is, (1 + jw/w,)’,
which is an approximation.

H(dB) A 5 ¢ & A
20 logyo |1 + jw!
50 L 210 J \ 90° | I
g il tan ' @
0 T | L > 0° I 1 .
0.1 1 \ 107, 100 0.1 15y 10 100
20logigT——————— " ™
ol BT jew/10-wi00] 58 -
L4 6wll0 77T
i —tan 5
.
—40 ~ _180° | — /100
(a) (b)

Figure 14.17
Bode plots for Example 14.5: (a) magnitude plot, (b) phase plot.

5. Evaluate. Although we could use MATLAB to validate the
solution, we will use a more straightforward approach. First, we
must realize that the denominator assumes that £ = 0 for the
approximation, so we will use the following equation to check
our answer:

s+ 1

H(s) = ——
(s) s+ 107

We also note that we need to actually solve for H,z and the
corresponding phase angle ¢. First, let @ = 0.
Hgg = 20 log,o(1/100) = —40 and ¢ =0°
Now try @ = 1.
Hys = 20 log;((1.4142/99) = —36.9 dB
which is the expected 3 dB up from the corner frequency.
j+1

¢ =45 from H(j) = m
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Now try @ = 100.
Hyz = 20 log,,(100) — 20 log,,(9900) = 39.91 dB

¢ is 90° from the numerator minus 180°, which gives —90°. We
now have checked three different points and got close agreement,
and, since this is an approximation, we can feel confident that
we have worked the problem successfully.

You can reasonably ask why did we not check at @ = 10?
If we just use the approximate value we used above, we end up
with an infinite value, which is to be expected from { = 0 (see
Fig. 14.12a). If we used the actual value of H(j10) we will still
end up being far from the approximate values, since { = 0.6 and
Fig. 14.12a shows a significant deviation from the approximation.
We could have reworked the problem with { = 0.707, which
would have gotten us closer to the approximation. However, we
really have enough points without doing this.

6. Satisfactory? We are satisfied the problem has been worked

successfully and we can present the results as a solution to the
problem.

Iﬂ_ PrBCtlce Problem 14.5 Construct the Bode plots for

10

H(s) = —
s(s~ + 80s + 400)

Answer: See Fig. 14.18.

H (dB) A b A
4 1 ]
201, _-20logg— 20 log,g—————s—
v OB 20 IR0 0 — w/400]
0 et I Ly f L1 > 0° — - L1 >
0.1 |‘2-~“‘ 1020\\/ 100200 ® 0.1 12 1020 S 100200 @
~ N . 3
_20 e . _90° “A.___‘_.‘:a,‘.:/_/_ .........
-20 log;, 40 N
1) TR R e e T el DSy
40 20 dB/decade -180° -

~tan'— €
1 - w400
-270° |
~60 dB/decade
(a) (b)

Figure 14.18
For Practice Prob. 14.5: (a) magnitude plot, (b) phase plot.
|H_E¥amp|€ 14.6 Given the Bode plot in Fig. 14.19, obtain the transfer function H(w).

Solution:
To obtain H(w) from the Bode plot, we keep in mind that a zero always
causes an upward turn at a corner frequency, while a pole causes a
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downward turn. We notice from Fig. 14.19 that there is a zero jw at the
origin which should have intersected the frequency axis at @ = 1. This is
indicated by the straight line with slope +20 dB/decade. The fact that this
straight line is shifted by 40 dB indicates that there is a 40-dB gain; that is,

40 = 20 long’ = long =2
or
K =10 = 100

In addition to the zero je at the origin, we notice that there are three
factors with corner frequencies at @ = 1, 5, and 20 rad/s. Thus, we have:

1. A pole at p = 1 with slope —20 dB/decade to cause a down-
ward turn and counteract the zero at the origin. The pole at
p = 1 is determined as 1/(1 + jw/1).

2. Another pole at p = 5 with slope —20 dB/decade causing a
downward turn. The pole is 1/(1 + jw/5).

3. A third pole at p = 20 with slope —20 dB/decade causing a
further downward turn. The pole is 1/(1 + jw/20).

Putting all these together gives the corresponding transfer function as

— 100w
(1 + jo/D(1 + jo/5)(1 + jw/20)
B jwl0*
 (jw + D(jo + 5)(jo + 20)
or
4
H(s) = D2 s = jo

(s + (s + 5)(s + 20)

629

H A
40dB f--------g —20 dB/decade
g
+20 ddeccladc
—4:(} dBa’dcca(:icx
0 ' T
0.1 | 5 10 20 100'w

Figure 14.19
For Example 14.6.

Obtain the transfer function H(w) corresponding to the Bode plot in
Fig. 14.20.

4,000(s + 5)
(s + 10)(s + 100)*

Answer: Hw) =

To see how to use MATLAB to produce Bode plots, refer to Section 14.11.

14.5 l Series Resonance

The most prominent feature of the frequency response of a circuit may
be the sharp peak (or resonant peak) exhibited in its amplitude char-
acteristic. The concept of resonance applies in several areas of science
and engineering. Resonance occurs in any system that has a complex
conjugate pair of poles: it is the cause of oscillations of stored energy
from one form to another. It is the phenomenon that allows frequency

Practice Problem 14.6

H

0dB

A

+20 dB/decade

—40 dB/decade

510 100 1000

Figure 14.20
For Practice Prob. 14.6.
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R Jwl

|
N —
5 mﬁ /;) T;&)C

Figure 14.21

The series resonant circuit.

Note No. 4 becomes evident from the
fact that

Vm
|Vf| = ?wﬂ‘{‘ = QVm
v _ Vm I _ v
| (.‘l_ R w(,C_Q m

where Qs the quality factor, defined
in Eq. (14.38).

Chapter 14  Frequency Response

discrimination in communications networks. Resonance occurs in any
circuit that has at least one inductor and one capacitor.

Resonance is a condition in an RLC circuit in which the capacitive and
inductive reactances are equal in magnitude, thereby resulting in a
purely resistive impedance.

Resonant circuits (series or parallel) are useful for constructing filters,
as their transfer functions can be highly frequency selective. They are
used in many applications such as selecting the desired stations in radio
and TV receivers.

Consider the series RLC circuit shown in Fig. 14.21 in the fre-
quency domain. The input impedance is

r

v,
Z=Hw) =7 =R+ jol +

4.22
JjoC (14.22)

or

Z=R +‘j(wl_ = L) (14.23)

wC

Resonance results when the imaginary part of the transfer function is
zero, or

1
Im(Z)=wlL ——=0 (14.24)
wC

The value of w that satisfies this condition is called the resonant fre-
quency @y. Thus, the resonance condition is

1

wol = F (14.25)
0%
or
1
wy = W rad/s (14.26)
Since wy = 27 [,
T
o= 2w VIC Hz (14.27)

Note that at resonance:

1. The impedance is purely resistive, thus, Z = R. In other words,
the LC series combination acts like a short circuit, and the entire
voltage is across R.

2. The voltage V, and the current I are in phase, so that the power

factor is unity.

. The magnitude of the transfer function H(w) = Z(w) is minimum.

4. The inductor voltage and capacitor voltage can be much more
than the source voltage.

o

The frequency response of the circuit’s current magnitude

J “m

I=l]=—= : ;
VR? + (wlL — 1/wC)

(14.28)
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is shown in Fig. 14.22; the plot only shows the symmetry illustrated
in this graph when the frequency axis is a logarithm. The average
power dissipated by the RLC circuit is

| oy
P(w) = - I’R (14.29)

The highest power dissipated occurs at resonance, when I = V,,/R, so
that

1 Vi,
Plwg) = E R (14.30)

At certain frequencies w = w;, w,, the dissipated power is half the
maximum value; that is,
(a/V2Y Vi

= (14.31)

IU({L”} = ID(L!J:) — IR 4R

Hence, @, and w, are called the half-power frequencies.
The half-power frequencies are obtained by setting Z equal to V2R,
and writing

,a" i 1 3_ -
VR +(wL w(_,) = V2R (14.32)

Solving for w, we obtain

__R (£)2 L b
R Y) L) T L

_R (i)z el
T 21) " IC

We can relate the half-power frequencies with the resonant frequency.
From Egs. (14.26) and (14.33),

wy = Vo0, (14.34)

(14.33)

showing that the resonant frequency is the geometric mean of the half-
power frequencies. Notice that @, and w, are in general not symmet-
rical around the resonant frequency w,, because the frequency response
is not generally symmetrical. However, as will be explained shortly,
symmetry of the half-power frequencies around the resonant frequency
is often a reasonable approximation.

Although the height of the curve in Fig. 14.22 is determined by R,
the width of the curve depends on other factors. The width of the
response curve depends on the bandwidth B, which is defined as the
difference between the two half-power frequencies,

B=w — o (14.35)

This definition of bandwidth is just one of several that are commonly
used. Strictly speaking, B in Eq. (14.35) is a half-power bandwidth,
because it is the width of the frequency band between the half-power
frequencies.

The “sharpness” of the resonance in a resonant circuit is measured
quantitatively by the quality factor Q. At resonance, the reactive energy

631

I A
N O e e -

m

0.707V,, /R |-======-=- -

i3

0 W) Wy
SE——

Bandwidth B
Figure 14.22
The current amplitude versus frequency

for the series resonant circuit of
Fig. 14.21.

EY
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Although the same symbol Qs used
for the reactive power, the two are not
equal and should not be confused. Q
here is dimensionless, whereas reactive
power Qis in VAR. This may help dis-
tinguish between the two.

Amplitude 4
0, (least selectivity)
> (medium selectivity)
O (greatest selectivity)

Figure 14.23
The higher the circuit O, the smaller the
bandwidth.

The quality factor is a measure of
the selectivity (or “sharpness” of
resonance) of the circuit.
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in the circuit oscillates between the inductor and the capacitor. The
quality factor relates the maximum or peak energy stored to the energy
dissipated in the circuit per cycle of oscillation:
Peak energy stored in the circuit
Q=27 —— — (14.36)
Energy dissipated by the circuit
in one period at resonance

It is also regarded as a measure of the energy storage property of a cir-
cuit in relation to its energy dissipation property. In the series RLC
circuit, the peak energy stored is 3L/°, while the energy dissipated in
one period is %(IQR)(I/ﬁ)). Hence,

P - S (14.37)
=2 = %
= SPPR(1/fo) R
or
gt 1 (14.38)
R woCR ’

Notice that the quality factor is dimensionless. The relationship
between the bandwidth B and the quality factor Q is obtained by sub-
stituting Eq. (14.33) into Eq. (14.35) and utilizing Eq. (14.38).

R
B=— 14.39
3 (14.39)

- %
o

or B = wjCR. Thus

The quality factor of a resonant circuit is the ratio of its resonant
frequency to its bandwidth.

Keep in mind that Egs. (14.33), (14.38), and (14.39) only apply to a
series RLC circuit.

As illustrated in Fig. 14.23, the higher the value of O, the more
selective the circuit is but the smaller the bandwidth. The selectivity of
an RLC circuit is the ability of the circuit to respond to a certain fre-
quency and discriminate against all other frequencies. If the band of
frequencies to be selected or rejected is narrow, the quality factor of
the resonant circuit must be high. If the band of frequencies is wide,
the quality factor must be low.

A resonant circuit is designed to operate at or near its resonant fre-
quency. It is said to be a high-Q circuit when its quality factor is equal
to or greater than 10. For high-Q circuits (Q = 10), the half-power
frequencies are, for all practical purposes, symmetrical around the res-
onant frequency and can be approximated as

B
. Wy = Wy s (14.4“)

B
=07 >

High-Q circuits are used often in communications networks.
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We see that a resonant circuit is characterized by five related
parameters: the two half-power frequencies @, and w,, the resonant fre-
quency @y, the bandwidth B, and the quality factor Q.

In the circuit of Fig. 1424, R=2Q, L =1 mH, and C = 0.4 uF. Example 14.7
(a) Find the resonant frequency and the half-power frequencies. (b) Cal-

culate the quality factor and bandwidth. (¢) Determine the amplitude R L

of the current at @y, @,, and w-.

Solution: 0smen T ¢
(a) The resonant frequency is

1 1 Figure 14.24
= = = 50 krad/s For Example 14.7.
VIC V1077 x04x10°°

B METHOD 1 The lower half-power frequency is

R RY | 1
o= —m &Y &
= »-2%]0_3 + V(10%)? + (50 X 10°)
—1 + V1 + 2500 krad/s = 49 krad/s
Similarly, the upper half-power frequency is
@, = 1+ V1 + 2500 krad/s = 51 krad/s
(b) The bandwidth is

B = w>, — w; = 2 krad/s

Wy

or

R 2
B = Z = 03 = 2 krad/s
The quality factor is

Wy 50
0 B
B METHOD 2 Alternatively, we could find

@l 50X 10°x 1077

= 3 =25
From Q. we find
50 x 10°
B=0o20" Y _okmdls
0 25

Since O > 10, this is a high-Q circuit and we can obtain the half-
power frequencies as

B
w1=wn—5=50—]=49kradfs

w2=w(,+§=50+]=51kradf‘s



634

Chapter 14  Frequency Response

as obtained earlier.
(c) At w = wy,

At w = wy, w,,

T Practice Problem 14.7

+
: 1

1= "mﬁ \_«" R jwl =/ R
Figure 14.25
The parallel resonant circuit.

v a

‘:F!I'R ‘‘‘‘‘‘‘‘‘‘‘‘ i
0.707 [,R [-=--===-==3 i i

0 W) Wy Wy I‘:-'

-—

Bandwidth B
Figure 14.26

The current amplitude versus frequency for
the series resonant circuit of Fig. 14.25.

We can see this from the fact that

I = L ]
|.".|_w0L_Qm

II(_" = wilC‘!mR = Q‘rm

where Qs the quality factor, defined
in Eq. (14.47).

A series-connected circuit has R = 4 () and L = 25 mH. (a) Calculate
the value of C that will produce a quality factor of 50. (b) Find @, w-,
and B. (¢) Determine the average power dissipated at w = wg, @, w-.
Take V,, = 100 V.

Answer: (a) 0.625 uF, (b) 7920 rad/s, 8080 rad/s, 160 rad/s, (c) 1.25 kW,
0.625 kW, 0.625 kW.

14.6 M Parallel Resonance

The parallel RLC circuit in Fig. 14.25 is the dual of the series RLC cir-
cuit. So we will avoid needless repetition. The admittance is
|

l 1
=Hw)=—=—+7 3 — f
Y = H(w) vV R JjoC + ol (14.41)

or

| |
Yo = il @C—— ;
R _i(wC o L) (14.42)

Resonance occurs when the imaginary part of Y is zero,

1

wC=—=0 (14.43)
wl
or
] rad/s (14.44)
Wy = 7 — -
" VIC

which is the same as Eq. (14.26) for the series resonant circuit. The
voltage |V| is sketched in Fig. 14.26 as a function of frequency.
Notice that at resonance, the parallel LC combination acts like an
open circuit, so that the entire current flows through R. Also, the
inductor and capacitor current can be much more than the source
current at resonance.

We exploit the duality between Figs. 14.21 and 14.25 by compar-
ing Eq. (14.42) with Eq. (14.23). By replacing R, L, and C in the
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expressions for the series circuit with 1/R, C, and L respectively, we
obtain for the parallel circuit

1 ( | )2 1
wl = ——+ . +_
2RC 2RC LC

/ (14.45)
1 ( 1 ) 1
w, = —— + — ]
° 2RC 2RC LC
B = = = L (14.46)
ws [OF] RC o
wy R
=-—= RC=—— 14.47
0 B wy RC wol. ( )

It should be noted that Egs. (14.45) to (14.47) apply only to a parallel
RLC circuit. Using Eqgs. (14.45) and (14.47), we can express the half-
power frequencies in terms of the quality factor. The result is

P L e [ RY s
w, = ‘”(’\.' | 20 20° Wy = fv‘n\l.' 1 20 20

(14.48)
Again, for high-Q circuits (Q = 10)
B B
W) = wy — 5, wy = wy + 5 (14.49)

Table 14.4 presents a summary of the characteristics of the series and par-
allel resonant circuits. Besides the series and parallel RLC considered
here, other resonant circuits exist. Example 14.9 treats a typical example.

TABLE 14.4

Summary of the characteristics of resonant RLC circuits.

Characteristic Series circuit Parallel circuit

Resonant frequency, wg ———

1
VILC VLC
. L 1 R
Quality factor, 0 % or 0o RC @ or wyRC
Bandwidth, B 2 =
: 0 0
Half-power frequencies, w,, w> @y |1+ (L)z + 0 Wy |1+ (L)z o
p q Sy Wi W2 0 2 — 2 ] 2Q A 3
B B
For 0 = 10, w,, @, wy = 5 wy * 5

635
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105sinwr () SR %L L

<

Figure 14.27
For Example 14.8.

In the parallel RLC circuit of Fig. 14.27, let R = 8 k), L = 0.2 mH,
and C = 8 uF. (a) Calculate w,, O, and B. (b) Find w, and w-.
(¢) Determine the power dissipated at wy, @, and w-.

Solution:
(a)
1 | 10°
Wy = = = — = 25 krad/s
T VIC Vo2 x102x8x10° 4
R 8 X 10°
Q=—= = 1,600

wol 25 X 10° X 02 X 1073

Wy
B =—=15.625rad/s
0

(b) Due to the high value of O, we can regard this as a high-Q circuit,
Hence,

B

) = wy = 5 = 25,000 = 7.812 = 24,992 rad/s
B

w; = g + 5 = 25,000 + 7.812 = 25,008 rad/s

()Atw = wy, Y = 1/R or Z = R = 8k{(). Then

v 10/-90°
[ =~ = ———_—125/-90°mA
°= 7" 8000 B

Since the entire current flows through R at resonance, the average
power dissipated at w = wy is

1 .
P =S|LIR = (125 X 107°)*(8 X 10°) = 625 mW

or

V2 100

pP= =———— = 625mW

2R 2x8X10° m

Atw = Wy, Wa,
Y
P= =3.125mW
4R

" Practice Problem 14.8

A parallel resonant circuit has R = 100 k{2, L = 20 mH, and C = 5 nF.
Calculate wg, w;, @», O, and B.

Answer: 100 krad/s, 99 krad/s, 101 krad/s, 50, 2 krad/s.
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Determine the resonant frequency of the circuit in Fig. 14.28.

Solution:
The input admittance is

) 1 1 ) 2 — jw2
Y =jwll + —+ ———=0.1 + jw0.l + ———
10 2+ jw2 4 + 4w
At resonance, Im(Y) = 0 and
2wy
w0l ——5 =0 = wo = 2 rad/s
4 + 4wy

Example 14.9

2H
1, cos wt G —— 0.1F é 10Q

2Q

Figure 14.28
For Example 14.9.

Calculate the resonant frequency of the circuit in Fig. 14.29.

Answer: 100 rad/s.

14.7 [ Passive Filters

The concept of filters has been an integral part of the evolution of elec-
trical engineering from the beginning. Several technological achieve-
ments would not have been possible without electrical filters. Because
of this prominent role of filters, much effort has been expended on the
theory, design, and construction of filters and many articles and books
have been written on them. Our discussion in this chapter should be
considered introductory.

A filter is a circuit that is designed to pass signals with desired
frequencies and reject or attenuate others.

As a frequency-selective device, a filter can be used to limit the fre-
quency spectrum of a signal to some specified band of frequencies.
Filters are the circuits used in radio and TV receivers to allow us to
select one desired signal out of a multitude of broadcast signals in the
environment.

A filter is a passive filter if it consists of only passive elements R,
L, and C. It is said to be an active filter if it consists of active elements
(such as transistors and op amps) in addition to passive elements R, L,
and C. We consider passive filters in this section and active filters in
the next section. LC filters have been used in practical applications for
more than eight decades. LC filter technology feeds related areas such
as equalizers, impedance-matching networks, transformers, shaping
networks, power dividers, attenuators, and directional couplers, and is
continuously providing practicing engineers with oppurtunities to inno-
vate and experiment. Besides the LC filters we study in these sections,
there are other kinds of filters—such as digital filters, electromechanical
filters, and microwave filters—which are beyond the level of this text.

Practice Problem 14.9 |

100 mH
211k

V,, cos wt 0.5 mF = 200

Figure 14.29
For Practice Prob. 14.9
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Figure 14.30

Ideal frequency response of four types of
filter: (a) lowpass filter, (b) highpass filter,
(c) bandpass filter, (d) bandstop filter.

R
+
!,-'r-(f) C == v(f)
Figure 14.31
A lowpass filter.
]H(w)|n
1
| ldeal
0.707 [---- Kk
0 o, %

Figure 14.32

Ideal and actual frequency response of a

lowpass filter.
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As shown in Fig. 14.30, there are four types of filters whether pas-
sive or active:

1. A lowpass filter passes low frequencies and stops high frequencies,
as shown ideally in Fig. 14.30(a).

2. A highpass filter passes high frequencies and rejects low frequencies,
as shown ideally in Fig. 14.30(b).

3. A bandpass filter passes frequencies within a frequency band and
blocks or attenuates frequencies outside the band, as shown ide-
ally in Fig. 14.30(c).

4. A bandstop filter passes frequencies outside a frequency band and
blocks or attenuates frequencies within the band, as shown ideally
in Fig. 14.30(d).

Table 14.5 presents a summary of the characteristics of these filters. Be
aware that the characteristics in Table 14.5 are only valid for first- or
second-order filters—but one should not have the impression that only
these kinds of filter exist. We now consider typical circuits for realiz-
ing the filters shown in Table 14.5.

TABLE 14.5

Summary of the characteristics of ideal filters.

Type of Filter H(0) H(>) H(w,) or H(wy)
Lowpass 1 0 1/V2
Highpass 0 1/V2
Bandpass 0 0 1
Bandstop 1 1 0

w,. is the cutoff frequency for lowpass and highpass filters: w, is the center frequency for
bandpass and bandstop filters.

14.7.1 Lowpass Filter

A typical lowpass filter is formed when the output of an RC circuit is
taken off the capacitor as shown in Fig. 14.31. The transfer function

(see also Example 14.1) is
\.r ] > C
H(w) = —2 = - /ff"_.‘ 5

1
H(w) | + jwRC (14.50)
Note that H(0) = 1, H(%) = 0. Figure 14.32 shows the plot of |H(w)|,
along with the ideal characteristic. The half-power frequency, which is
equivalent to the corner frequency on the Bode plots but in the con-
text of filters is usually known as the cutoff frequency w,, is obtained
by setting the magnitude of H(w) equal to 1/V/2, thus,

1

1
Hw) = ————— = —=
V1+ ol V2
or
|
= 14.51
We = P ( )
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The cutoff frequency is also called the rolloff frequency.

A lowpass filter is designed to pass only frequencies from dc up to
the cutoff frequency ..

A lowpass filter can also be formed when the output of an RL cir-
cuit is taken off the resistor. Of course, there are many other circuits
for lowpass filters.

14.7.2. Highpass Filter

A highpass filter is formed when the output of an RC circuit is taken
off the resistor as shown in Fig. 14.33. The transfer function is

"‘JrJ R
H(w) = — = o
V., R+ 1/jwC
TR 14.52
(@) = 7 T joRC (14.52)

Note that H(0) = 0, H(%) = 1. Figure 14.34 shows the plot of |H(w)|.
Again, the corner or cutoff frequency is

1
w,. =

- 14.53
¢ = Re (14.53)

A highpass filter is designed to pass all frequencies above its cutoff
frequency w,.

A highpass filter can also be formed when the output of an RL cir-
cuit is taken off the inductor.

14.7.3 Bandpass Filter

The RLC series resonant circuit provides a bandpass filter when the
output is taken off the resistor as shown in Fig. 14.35. The transfer
function is

H(a) = -2 = g
)=V, T R +joL — 1/eC)

We observe that H(0) = 0, H(%¢) = 0. Figure 14.36 shows the plot of
| H(w)|. The bandpass filter passes a band of frequencies (0, < @ < w,)
centered on wy, the center frequency, which is given by
. .
VLC

(14.54)

(14.55)

wy =

A bandpass filter is designed to pass all frequencies within a band of
frequencies, w; < w < ws.

Since the bandpass filter in Fig. 14.35 is a series resonant circuit, the
half-power frequencies, the bandwidth, and the quality factor are deter-
mined as in Section 14.5. A bandpass filter can also be formed by
cascading the lowpass filter (where w, = w_.) in Fig. 14.31 with the
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The cutoff frequency is the frequency
at which the transfer function H drops
in magnitude to 70.71% of its maximum
value. It is also regarded as the fre-
quency at which the power dissipated
in a circuit is half of its maximum value.

vi(1) R< v,(0)

Figure 14.33
A highpass filter.

[H(w}h\

N : Ideal

0.707 |---- (_

Actual

0 . w

Figure 14.34
Ideal and actual frequency response of a
highpass filter.

C
+

v(0) R Z 4(0)
Figure 14.35
A bandpass filter.
|H(w}| A

1k : 5. Ideal
0.707 f--------- - \
, Actual
0 @) u:'u @ f:

Figure 14.36
Ideal and actual frequency response of a
bandpass filter.
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(_"l +
(1) C_) . v,(1)

Figure 14.37
A bandstop filter.

| Hw)| &

1
0.707 W S—

Actual

42 Ideal

0 @y
Figure 14.38
Ideal and actual frequency response of a
bandstop filter.

wy oy w
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highpass filter (where @, = w,) in Fig. 14.33. However, the result
would not be the same as just adding the output of the lowpass filter
to the input of the highpass filter, because one circuit loads the other
and alters the desired transfer function.

14.7.4 Bandstop Filter

A filter that prevents a band of frequencies between two designated
values (@, and w-) from passing is variably known as a bandstop, band-
reject, or notch filter. A bandstop filter is formed when the output RLC
series resonant circuit is taken off the LC series combination as shown
in Fig. 14.37. The transfer function is

i Vo Jjwl = 1/wC) fise
A= Vi R+ j(wl — 1/wC) (24:28)
Notice that H(0) = 1, H(e) = 1. Figure 14.38 shows the plot of
|H(w)|. Again, the center frequency is given by
I
= — 14.57
Wy VIC ( )

while the half-power frequencies, the bandwidth, and the quality fac-
tor are calculated using the formulas in Section 14.5 for a series reso-
nant circuit. Here, wq is called the frequency of rejection, while the
corresponding bandwidth (B = @; — w,) is known as the bandwidth
of rejection. Thus,

A bandstop filter is designed to stop or eliminate all frequencies
within a band of frequencies, w; < w < ws.

Notice that adding the transfer functions of the bandpass and the
bandstop gives unity at any frequency for the same values of R, L, and
C. Of course, this is not true in general but true for the circuits treated
here. This is due to the fact that the characteristic of one is the inverse
of the other.

In concluding this section, we should note that:

1. From Eqgs. (14.50), (14.52), (14.54), and (14.56), the maximum gain
of a passive filter is unity. To generate a gain greater than unity,
one should use an active filter as the next section shows.

2. There are other ways to get the types of filters treated in this section.

3. The filters treated here are the simple types. Many other filters
have sharper and complex frequency responses.

.~ Example 14.10

Determine what type of filter is shown in Fig. 14.39. Calculate the cor-
ner or cutoff frequency. Take R = 2 k€), L = 2 H, and C = 2 uF.

Solution:
The transfer function is

R|1/sC
S S 1 IV

=1 =] 14.10.1
V,  sL+R|1/sC LA )
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But

1 R/sC R
sC R+ 1/sC 1+ sRC

Substituting this into Eq. (14.10.1) gives

R/(1 + sRC) R
sL + R/(1 + sSRC) s?RLC + sL + R’

H(s) =

§ = jw

or
R
—w’RLC + joL + R

Since H(0) = 1 and H(%) = 0, we conclude from Table 14.5 that the
circuit in Fig. 14.39 is a second-order lowpass filter. The magnitude
of H is

H(w) = (14.10.2)

R

H =
V(R — w’RLC) + o?L?

(14.10.3)

The corner frequency is the same as the half-power frequency, i.e.,
where H is reduced by a factor of 1/V2. Since the dc value of H(w)
is 1, at the corner frequency, Eq. (14.10.3) becomes after squaring
, 1 R?
2 (R - wlRLC)* + wiI?

or

2 v wcL 3
2=(1—-wlC)*+ R

Substituting the values of R, L, and C, we obtain
2=(1— w24 X107%? + (w,1073)?

Assuming that @, is in krad/s,
2=(1—-40+w? o 160}—Tw:-1=0

Solving the quadratic equation in w?, we get w? = 0.5509 and —0.1134.
Since w, is real,

w,. = 0.742 krad/s = 742 rad/s

641

0(t) SR C=

Figure 14.39
For Example 14.10.

For the circuit in Fig. 14.40, obtain the transfer function V,(w)/V ().
[dentify the type of filter the circuit represents and determine the cor-
ner frequency. Take R, = 100 €} = R,, L = 2 mH.

Answer: Ry Jo ) highpass filt
 E Tt R\ Tel ighpass filter
R\R>

e OB bl
e =R, + Ry)L radrs

Practice Problem 14.10 |

R

v;(1) L Ry < (1)

Figure 14.40
For Practice Prob. 14.10.
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. Example 14.11

If the bandstop filter in Fig. 14.37 is to reject a 200-Hz sinusoid while
passing other frequencies, calculate the values of L and C. Take
R = 150  and the bandwidth as 100 Hz.

Solution:

We use the formulas for a series resonant circuit in Section 14.5.
B = 2w (100) = 200 rad/s

But

R R 150
Pt =it OV GEagry
I = B~ 200m 02387

Rejection of the 200-Hz sinusoid means that f, is 200 Hz, so that w,
in Fig. 14.38 is

Wy = 27 S = 2m(200) = 4004
Since wy, = 1/VLC,

I I
O =t 065 B
2L (4007)2(0.2387) #

" Practice Problem 14.11

Design a bandpass filter of the form in Fig. 14.35 with a lower cutoff
frequency of 20.1 kHz and an upper cutoff frequency of 20.3 kHz. Take
R = 20 k{). Calculate L, C, and Q.

Answer: 15.92 H, 3.9 pF, 101.

14.8 Active Filters

There are three major limitations to the passive filters considered in the
previous section. First, they cannot generate gain greater than 1; pas-
sive elements cannot add energy to the network. Second, they may
require bulky and expensive inductors. Third, they perform poorly at
frequencies below the audio frequency range (300 Hz < << 3,000 Hz).
Nevertheless, passive filters are useful at high frequencies.

Active filters consist of combinations of resistors, capacitors, and
op amps. They offer some advantages over passive RLC filters. First,
they are often smaller and less expensive, because they do not require
inductors. This makes feasible the integrated circuit realizations of fil-
ters. Second, they can provide amplifier gain in addition to providing
the same frequency response as RLC filters. Third, active filters can be
combined with buffer amplifiers (voltage followers) to isolate each
stage of the filter from source and load impedance effects. This isola-
tion allows designing the stages independently and then cascading them
to realize the desired transfer function. (Bode plots, being logarithmic,
may be added when transfer functions are cascaded.) However, active
filters are less reliable and less stable. The practical limit of most active
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filters is about 100 kHz—most active filters operate well below that
frequency.

Filters are often classified according to their order (or number of
poles) or their specific design type.

14.8.1 First-Order Lowpass Filter

One type of first-order filter is shown in Fig. 14.41. The components
selected for Z; and Z, determine whether the filter is lowpass or high-
pass, but one of the components must be reactive.

Figure 14.42 shows a typical active lowpass filter. For this filter,
the transfer function is

Vo i 14.58
H = — = - — .
(w) v, Z ( )
where Z; = R, and
1 R/ jwCy Ry
Z,= R = - 14.59
s S ‘ JjoCr Ry + 1/joCr 1 + joC R, ( )
Therefore,
H(w) = —-& T __ (14.60)
wJ RJ’ 1 + _,I'.{.UC‘;'R; )

We notice that Eq. (14.60) is similar to Eq. (14.50), except that there
is a low frequency (w — 0) gain or dc gain of —R,/R,. Also, the cor-
ner frequency is

1
@,

= RJ,—CI, (14.61}

which does not depend on R;. This means that several inputs with dif-
ferent R; could be summed if required, and the corner frequency would
remain the same for each input.

14.8.2 First-Order Highpass Filter
Figure 14.43 shows a typical highpass filter. As before,

R R (14.62)
Vv, Z
where Z; = R; + 1/jwC; and Z; = R, so that
Ry JwCR,
= ™ 5t (14.63)

This is similar to Eq. (14.52), except that at very high frequencies
(w — =), the gain tends to —R,/R,. The corner frequency is

(14.64)

14.8.3 Bandpass Filter

The circuit in Fig. 14.42 may be combined with that in Fig. 14.43 to
form a bandpass filter that will have a gain K over the required range
of frequencies. By cascading a unity-gain lowpass filter, a unity-gain
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Z
Z
o— (IR —
* -
v; \."0
o < o

Figure 14.41
A general first-order active filter.

Ry
—AMA—

G

[

1]

R;

* +
Vi v,
o o

Figure 14.42

Active first-order lowpass filter.

%,
R G

o—wn—{f—

v, v

o o

Figure 14.43
Active first-order highpass filter.

This way of creating a bandpass filter,
not necessarily the best, is perhaps the
easiest to understand.
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highpass filter, and an inverter with gain —R,/R;, as shown in the block
diagram of Fig. 14.44(a), we can construct a bandpass filter whose fre-
quency response is that in Fig. 14.44(b). The actual construction of the
bandpass filter is shown in Fig. 14.45.

Low-pass
filter

High-pass
filter

Figure 14.44

(a)

H A
s L
0707 K |==opfomemmmmmmancaicans
B '
—{ Inverter —= ¥, L >
0 w, wy w5 @
(b)

Active bandpass filter: (a) block diagram, (b) frequency response.

Stage | E Stage 2 E Stage 3

Low-pass filter ! High-pass filter ' An inverter
sets w, value . sets w) value | provides gain

Figure 14.45
Active bandpass filter.

The analysis of the bandpass filter is relatively simple. Its transfer
function is obtained by multiplying Eqs. (14.60) and (14.63) with the
gain of the inverter; that is,

3=(redell AR D
Hw) = —=|— = = : —
V; 1 + jwC\R 1 + jwC>R R;

(14.65)
_ _&' 1 ;ngR
R; 1 + joC\R 1 + joCyR
The lowpass section sets the upper corner frequency as
I
W, = (14.66)

°  RC
while the highpass section sets the lower corner frequency as

1
= — 14.6
= (14.67)
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With these values of @, and -, the center frequency, bandwidth, and
quality factor are found as follows:

Wy = Vs (14.68)

B=w:— w (14.69)
=20

0=" (14.70)

To find the passband gain K, we write Eq. (14.65) in the standard
form of Eq. (14.15),

Ry Jjo/w, R, Jjwo;

_RJ- (1 + jw/w)(1 + jo/w,) s _R,- (@ + jo)w, + jw)
(14.71)

H(w) =

At the center frequency wy = Vw, w,, the magnitude of the transfer
function is

Ry J@ow; Ry w,
[H(wo)| = |= : ) =—=——— (14.72)
R; (w) + jwo)ws + jwg) R w) + w;
Thus, the passband gain is
k=2__o (14.73)
R, w, + w, :

14.8.4 Bandreject (or Notch) Filter

A bandreject filter may be constructed by parallel combination of a
lowpass filter and a highpass filter and a summing amplifier, as shown
in the block diagram of Fig. 14.46(a). The circuit is designed such that
the lower cutoff frequency @, is set by the lowpass filter while the
upper cutoff frequency w- is set by the highpass filter. The gap between
w, and w, is the bandwidth of the filter. As shown in Fig. 14.46(b), the
filter passes frequencies below @, and above w,. The block diagram in
Fig. 14.46(a) is actually constructed as shown in Fig. 14.47. The trans-
fer function is

3

Hia) = 2 Rf( 1 JWGR ) (14.74)
W= T T R ; .
V; Ri\ 1+ joCiR 1+ joCR
H
K
0.707 K
Low-pass v
filter sets
§ on —L Summing | - _ v to
‘ amplifier b ’
High-pass I -
filter sets L
Wy > W, '

(a)
Figure 14.46
Active bandreject filter: (a) block diagram, (b) frequency response.

W) Wy s

-—f

(b)
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Figure 14.47
Active bandreject filter.

The formulas for calculating the values of ,, w,, the center frequency,

bandwidth, and quality factor are the same as in Eqgs. (14.66) to (14.70).
To determine the passband gain K of the filter, we can write

Eq. (14.74) in terms of the upper and lower corner frequencies as

He }_&( l - jo/®, )
cas R\l + jw/w, 1+ ju/w
& f_; (1 + 2w/w, + (jw)/ww;)
R, (1 + jw/w)(] + jo/w)

(14.75)

Comparing this with the standard form in Eq. (14.15) indicates that in
the two passbands (w — 0 and @ — ©0) the gain is

le'

K B
R,

(14.76)

We can also find the gain at the center frequency by finding the mag-
nitude of the transfer function at @y = V@, writing

‘E{I + Rwy/w, + (.fwu)]Kwum)

H(wg) = 3 .
R, (1 + jog/@:)(1 + jwo/w))
14.77
B .
RJ; ) - w>

Again, the filters treated in this section are only typical. There are
many other active filters that are more complex.

Design a lowpass active filter with a dc gain of 4 and a corner frequency
of 500 Hz.

Solution:
From Eq. (14.61), we find

w, = 27f, = 2 (500) = (14.12.1)

Ry Cy
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The dc gain is

R.
H(0) = _ﬁ =—4 (14.12.2)

We have two equations and three unknowns. If we select C, = 0.2 uF,
then
1

Ry= — = 1.59kQ
27(500)0.2 X 10

and
Ty T .

We use a 1.6-k(} resistor for R, and a 400-() resistor for R,. Figure 14.42
shows the filter.
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Design a highpass filter with a high-frequency gain of 5 and a corner
frequency of 2 kHz. Use a 0.1-uF capacitor in your design.

Answer: R; = 800 () and R, = 4 k().

Practice Problem 14.12 |

Design a bandpass filter in the form of Fig. 14.45 to pass frequencies
between 250 Hz and 3,000 Hz and with K = 10. Select R = 20 k().

Solution:

1. Define. The problem is clearly stated and the circuit to be used
in the design is specified.

2. Present. We are asked to use the op amp circuit specified in
Fig. 14.45 to design a bandpass filter. We are given the value of
R to use (20 k(). In addition, the frequency range of the signals
to be passed is 250 Hz to 3 kHz.

3. Alternative. We will use the equations developed in Section 14.8.3
to obtain a solution. We will then use the resulting transfer
function to validate the answer.

4. Attempt. Since w, = 1/RC,, we obtain

1 1 1

O = Ry “2mfiR 2w x 250X 20 x 107 183 0F
Similarly, since @, = 1/RC,,
A S S ] 5 = 2.65nF
Rw, 2wfHiR 27 X 3,000 X 20 X 10
From Eq. (14.73),
R _ gthtes Ath _100250) .0

R; @7 f 3,000

Example 14.13
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If we select R; = 10 k{), then R, = 10.83R; = 108.3 k().
5. Evaluate. The output of the first op amp is given by
Vi—0 V¥V, —0 5265X%X107°(V, — 0)
20 kQ) 20 kQ) 1
v
1+ 53X 105

=0'—>V[=

The output of the second op amp is given by
Vi—0 0 V=0 _

1 20 kQ)

s31.83 nF

6.366 X 10 sV,

1 + 6.366 X 10 s

B 6.366 X 10 sV,

T (1 + 6366 X 10 %s)(1 + 5.3 X 10 3s)

0—

20kQ +

2:

The output of the third op amp is given by
V=0 V,— 0

= = i V,, / b °
0kQ 1083 KO 0—=V,=1083V, =27 X 25

6.894 X 10 %5V,

o T 6366 x 10-%)(1 + 5.3 X 1055
Let j27 X 25° and solve for the magnitude of V,/V,.
v, 10829
Vi (1 +jD(1)

[V, /V:| = (0.7071)10.829, which is the lower corner frequency point.
Let s = j27r X 3000 = j18.849 k(). We then get

Vo _ —j129.94
v, (1 +j12)(1 + 1)
129.94 /—90°

= = (0.7071)10.791 /—18.61°
(12.042/85.24°)(1.4142 /45°) ( ) ;

Clearly this is the upper corner frequency and the answer checks.
6. Satisfactory? We have satisfactorily designed the circuit and can
present the results as a solution to the problem.

"Practice Problem 14.13

Design a notch filter based on Fig. 14.47 for w, = 20 krad/s, K = 5,
and Q = 10. Use R = R; = 10 k(.

Answer: C, = 4.762 nF, C, = 5.263 nF, and R, = 50 k().

149 | Scaling

In designing and analyzing filters and resonant circuits or in circuit
analysis in general, it is sometimes convenient to work with element
values of 1 ), 1 H, or 1 F, and then transform the values to realistic
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values by scaling. We have taken advantage of this idea by not using
realistic element values in most of our examples and problems; mas-
tering circuit analysis is made easy by using convenient component val-
ues. We have thus eased calculations, knowing that we could use
scaling to then make the values realistic.

There are two ways of scaling a circuit: magnitude or impedance
scaling, and frequency scaling. Both are useful in scaling responses
and circuit elements to values within the practical ranges. While mag-
nitude scaling leaves the frequency response of a circuit unaltered,
frequency scaling shifts the frequency response up or down the fre-
quency spectrum.

14.9.1 Magnitude Scaling

Magnitude scaling is the process of increasing all impedances in a net-
work by a factor, the frequency response remaining unchanged.

Recall that impedances of individual elements R, L, and C are
given by

I
ZR = R_. Z;_ :_}Ift}l{.. Z(' e {14-78)
JwC
In magnitude scaling, we multiply the impedance of each circuit ele-
ment by a factor K, and let the frequency remain constant. This gives

the new impedances as
Z}( = ‘KNJZR == K'mR" Z:f = szf. :,!Iw‘KmL
I 14.79
Z} = [\’mzf' e = ( )
.)"‘U('/Km

Comparing Eq. (14.79) with Eq. (14.78), we notice the following changes
in the element values: R — K,,R, L — K,,L, and C — C/K,,. Thus, in
magnitude scaling, the new values of the elements and frequency are

R =K,R L' =K,L
£
Kﬂ'l,

' = o = w (14.80)

The primed variables are the new values and the unprimed variables
are the old values. Consider the series or parallel RLC circuit. We
now have

] 1 1
Vil V& IClK, VIE
showing that the resonant frequency, as expected, has not changed.
Similarly, the quality factor and the bandwidth are not affected by mag-
nitude scaling. Also, magnitude scaling does not affect transfer func-

tions in the forms of Egs. (14.2a) and (14.2b), which are dimensionless
quantities.

wy,  (14.81)

'
Wy =

649
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Freguency scaling is equivalent to rela-
beling the frequency axis of a fre-
guency response plot. It is needed
when translating frequencies such as a
resonant frequency, a comer frequency,
a bandwidth, etc., to a realistic level. It
can be used to bring capacitance and
inductance values into a range that is
convenient to work with.
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14.9.2 Frequency Scaling

Frequency scaling is the process of shifting the frequency response of
a network up or down the frequency axis while leaving the impedance
the same.

We achieve frequency scaling by multiplying the frequency by a fac-
tor K, while keeping the impedance the same.

From Eq. (14.78), we see that the impedances of L and C are
frequency-dependent. If we apply frequency scaling to Z;(w) and Z(w)
in Eq. (14.78), we obtain

L
Z, = j@K)L' =jol = L'=--  (1482a)

. I l . ¢
. KT joC e K, Gz
since the impedance of the inductor and capacitor must remain the
same after frequency scaling. We notice the following changes in the
element values: L — L/K, and C — C/K,. The value of R is not
affected, since its impedance does not depend on frequency. Thus, in
frequency scaling, the new values of the elements and frequency are

b L i
R=R L=y
C ' (14.83)
C"r = E, w’ = Kfm

Again, if we consider the series or parallel RLC circuit, for the reso-
nant frequency

1 1 Ky =
VLI'C  VWLIKXC/K) VLC

and for the bandwidth

Krw, (14.84)

| -
Wy =

B' = K,B (14.85)

but the quality factor remains the same (Q' = Q).

14.9.3 Magnitude and Frequency Scaling

If a circuit is scaled in magnitude and frequency at the same time, then

=T y Kﬂi
R =K,R, L =-2L
Kf‘
l ' (14.86)
&= KHIK!'C, = K}-w

These are more general formulas than those in Eqs. (14.80) and (14.83).
We set K, = 1 in Eq. (14.86) when there is no magnitude scaling or
Ky =1 when there is no frequency scaling.
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A fourth-order Butterworth lowpass filter is shown in Fig. 14.48(a). The Example 14+1_4Q
filter is designed such that the cutoff frequency w,. = 1 rad/s. Scale the
circuit for a cutoff frequency of 50 kHz using 10- k() resistors.

1Q 1.848 H 0.765 H 10 kG2 58.82 mH 24.35H
dI1R A1IR 0 v A11A A1IA 0
+ +
v T 0765F = L.B48F 1Q 7 v T 2435pF = 588.2pF 10kQ =,
o o
(a) (b)

Figure 14.48
For Example 14.14: (a) Normalized Butterworth lowpass filter, (b) scaled version of the same lowpass filter.

Solution:
If the cutoff frequency is to shift from w,. = 1 rad/s to w.. = 2 (50)
krad/s, then the frequency scale factor is

w, 1007 X 10°

Kj-=—=ﬁ7=ﬂ-x 10°

w, 1
Also, if each 1-{) resistor is to be replaced by a 10- k() resistor, then
the magnitude scale factor must be

R" 10 % 10° 4
Ky=—=———7=10
m R l
Using Eq. (14.86),
L K’"L o (1.848) = 58.82 mH
= =i kS = H m
Y Rl ETS
It K”’L 10° (0.765) = 24.35 mH
=—Ly=——7=(0. =2435m
UK mx10°
G 0.765
Ci = = = 243.5 pF
VT KK m X 100 P
G; .
) 2 . LB8 _ oeso pF

P KK w % 10°

The scaled circuit is shown in Fig. 14.48(b). This circuit uses practical
values and will provide the same transfer function as the prototype in
Fig. 14.48(a), but shifted in frequency.

A third-order Butterworth filter normalized to w. = 1rad/s is shown Practice Problem 14.1@
in Fig. 14.49, Scale the circuit to a cutoff frequency of 10 kHz. Use

; 1Q 2H
15-nF capacitors. A &
+
Answer: R; = R, = 1.061 kQ), C} = C5, = 15nF, L' = 33.77 mH. v, —{F ==IF Si w
' 5

Figure 14.49
For Practice Prob. 14.14.
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14.10 | Frequency Response Using PSpice

PSpice is a useful tool in the hands of the modern circuit designer for
obtaining the frequency response of circuits. The frequency response
is obtained using the AC Sweep as discussed in Section D.5 (Appen-
dix D). This requires that we specify in the AC Sweep dialog box Total
Pts, Start Freq, End Freq, and the sweep type. Total Pts is the num-
ber of points in the frequency sweep, and Start Freq and End Freq are,
respectively, the starting and final frequencies, in hertz. In order to
know what frequencies to select for Start Freq and End Freq, one must
have an idea of the frequency range of interest by making a rough
sketch of the frequency response. In a complex circuit where this may
not be possible, one may use a trial-and-error approach.
There are three types of sweeps:

Linear: The frequency is varied linearly from Start Freg to End
Freq with Total Pts equally spaced points (or responses).

Octave: The frequency is swept logarithmically by octaves from
Start Freq to End Freq with Total Pts per octave. An octave is
a factor of 2 (e.g.. 2to 4, 4 to 8, 8 to 16).

Decade: The frequency is varied logarithmically by decades from
Start Freq to End Freq with Total Pts per decade. A decade
is a factor of 10 (e.g., from 2 Hz to 20 Hz, 20 Hz to 200 Hz,
200 Hz to 2 kHz).

It is best to use a linear sweep when displaying a narrow frequency
range of interest, as a linear sweep displays the frequency range well
in a narrow range. Conversely, it is best to use a logarithmic (octave
or decade) sweep for displaying a wide frequency range of interest—
if a linear sweep is used for a wide range, all the data will be crowded
at the high- or low-frequency end and insufficient data at the other end.

With the above specifications, PSpice performs a steady-state sinu-
soidal analysis of the circuit as the frequency of all the independent
sources is varied (or swept) from Start Freq to End Freg.

The PSpice A/D program produces a graphical output. The output
data type may be specified in the Trace Command Box by adding one
of the following suffixes to V or I

M Amplitude of the sinusoid.
P Phase of the sinusoid.
dB  Amplitude of the sinusoid in decibels, i.e., 20 log,, (amplitude).

. Example 14.15

8 k€2

s |

— | uF

+

v

Figure 14.50
For Example 14.15.

Determine the frequency response of the circuit shown in Fig. 14.50.

Solution:

We let the input voltage v, be a sinusoid of amplitude 1 V and phase 0°.
Figure 14.51 is the schematic for the circuit. The capacitor is rotated 270°
counterclockwise to ensure that pin | (the positive terminal) is on
top. The voltage marker is inserted to the output voltage across the
capacitor. To perform a linear sweep for 1 < f << 1000 Hz with 50
points, we select Analysis/Setup/AC Sweep, DCLICK Linear, type
50 in the Total Pts box, type 1 in the Start Freq box, and type 1000 in
the End Freq box. After saving the file, we select Analysis/Simulate to
simulate the circuit. If there are no errors, the PSpice A/D window will
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. ®

V1 R2< 1k lu==C1

ACMAG=1V
ACPHASE=0

Figure 14.51
The schematic for the circuit in Fig. 14.50.

display the plot of V(C1:1), which is the same as V, or H(w) = V,/1,
as shown in Fig. 14.52(a). This is the magnitude plot, since V(CI1:1) is
the same as VM(C1:1). To obtain the phase plot, select Trace/Add in
the PSpice A/D menu and type VP(C1:1) in the Trace Command box.
Figure 14.52(b) shows the result. By hand, the transfer function is
v, 1,000
H - =
@) == 5000 + jws
or
B 1
9 + 167 X 1073

showing that the circuit is a lowpass filter as demonstrated in Fig. 14.52.
Notice that the plots in Fig. 14.52 are similar to those in Fig. 14.3 (note
that the horizontal axis in Fig. 14.52 is logrithic while the horizontal
axis in Fig. 14.3 is linear.)

H(w)

10 Hz 100 Hz 1.0 KHz

O vi{Ccl:1) Ove(Cl:1)

Frequency

(a)
Figure 14.52

Freguency

(b)

For Example 14.15: (a) magnitude plot, (b) phase plot of the frequency response.

Obtain the frequency response of the circuit in Fig. 14.53 using PSpice.
Use a linear frequency sweep and consider 1 < /<< 1000 Hz with
100 points.

Answer: See Fig. 14.54.
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Practice Problem 14.15

I uF

Py
e 6 kQ

i1

(o

Figure 14.53
For Practice Prob. 14.15.
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1.0 Hz 10 Hz 100 Hz 1.0 KHz 1.0 Hz 10 Hz 100 Hz 1.0 KHz
O V(R2:2) 0O VP(R2:2)
Fregquency Freguency

(a) (b)

Figure 14.54
For Practice Problem 14.15: (a) magnitude plot, (b) phase plot of the frequency response.

" Example 14.16

ACMAG=10V
ACPHASE=0

Use PSpice to generate the gain and phase Bode plots of V' in the cir-
cuit of Fig. 14.55.

Solution:

The circuit treated in Example 14.15 is first-order while the one in this
example is second-order. Since we are interested in Bode plots, we use
decade frequency sweep for 300 < /<< 3,000 Hz with 50 points per
decade. We select this range because we know that the resonant

Figure 14.55
For Example 14.16.

frequency of the circuit is within the range. Recall that

= —— = 5 krad/s or fy= 2 = 795.8 Hz
27

After drawing the circuit as in Fig. 14.55, we select Analysis/Setup/AC
Sweep, DCLICK Decade, enter 50 in the Total Pts box, 300 as the
Start Freq, and 3,000 in the End Freg box. Upon saving the file, we
simulate it by selecting Analysis/Simulate. This will automatically
bring up the PSpice A/D window and display V(CI1:1) if there are no
errors. Since we are interested in the Bode plot, we select Trace/Add
in the PSpice A/D menu and type dB(V(C1:1)) in the Trace Command
box. The result is the Bode magnitude plot in Fig. 14.56(a). For the

-50 d i

-100 d !

-150 di . s af SElel

Siiiiiiiaiiscsceoesed 200 g Lemmmmmmmmmmmmmmmmmmmenn H

100 Hz 1.0 KHz 10 KHz 100 Hz 1.0 KHz 10 KHz
O dB(V(C1l:1)) O VE(Cl:1)
Frequency Frequency

(a) (b)

Figure 14.56
For Example 14.16: (a) Bode plot, (b) phase plot of the response.
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phase plot, we select Trace/Add in the PSpice A/D menu and type
VP(C1:1) in the Trace Command box. The result is the Bode phase
plot of Fig. 14.56(b). Notice that the plots confirm the resonant
frequency of 795.8 Hz.

Consider the network in Fig. 14.57. Use PSpice to obtain the Bode Practice Problem 14.16}’_m
plots for ¥, over a frequency from 1 kHz to 100 kHz using 20 points
per decade.

+
1/0° A 0.4 mH — 1luF 1kQ =¥

Figure 14.57
For Practice Prob. 14.16.

Answer: See Fig. 14.58.

e T B A S P M e s Gy A i
1.0 KHz 10 KHz 100 KHz 1.0 KHz 10 KHz 100 KHz

OdB(V(R1:1)) O VP(R1:1)
Frequency Frequency

(a) (b)
Figure 14.58
For Practice Prob. 14.16: Bode (a) magnitude plot, (b) phase plot.

14.11 J Computation Using MATLAB

MATLAB is a software package that is widely used for engineering
computation and simulation. A review of MATLAB is provided in
Appendix E for the beginner. This section shows how to use the soft-
ware to numerically perform most of the operations presented in this
chapter and Chapter 15. The key to describing a system in MATLAB is
to specify the numerator (num) and denominator (den) of the transfer
function of the system. Once this is done, we can use several MATLAB
commands to obtain the system’s Bode plots (frequency response) and
the system’s response to a given input.

The command bode produces the Bode plots (both magnitude and
phase) of a given transfer function H(s). The format of the command
is bode (num, den), where num is the numerator of H(s) and den is its
denominator. The frequency range and number of points are automat-
ically selected. For example, consider the transfer function in Exam-
ple 14.3. It is better to first write the numerator and denominator in
polynomial forms.
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Thus,

200 jew N 200s
(jo + (o + 10)  §* + 125 + 20
Using the following commands, the Bode plots are generated as shown
in Fig. 14.59. If necessary, the command logspace can be included to
generate a logarithmically spaced frequency and the command semilogx
can be used to produce a semilog scale.

H(s) =

§ = jw

>>num= [200 0] ; % specify the numerator of H(s)
>>den=[1 12 20]; % specify the denominator of H(s)
>>bode (num, den); % determine and draw Bode plots

The step response y(7) of a system is the output when the input x(¢) is
the unit step function. The command step plots the step response of a sys-
tem given the numerator and denominator of the transfer function of that
system. The time range and number of points are automatically selected.
For example, consider a second-order system with the transfer function

12

His)y=————"—
() s+ 3s 4+ 12

We obtain the step response of the system shown in Fig. 14.60 by using
the following commands.

>»n=12;
>d=1[1 3 12];
>>step(n,d) ;

We can verify the plot in Fig. 14.60 by obtaining y(#) = x(f) * u(t) or
H(s) = X(s)H(s).

Step response

20
10

-10
=20 k&

Magnitude (dB)
(=]

Amplitude

Phase (deg)
{=]

1 15 2 25 3 35 4

1072 107! 100

Frequency (rad/s)

Figure 14.59
Magnitude and phase plots.

10! 10° Time (s)
Figure 14.60

The Step response of
H(s) = 12/(s> + 3s + 12).

The command Isim is a more general command than step. It cal-
culates the time response of a system to any arbitrary input signal. The
format of the command is y = Isim (num, den, x, ¢), where x(f) is the
input signal, 7 is the time vector, and y(¢) is the output generated. For
example, assume a system is described by the transfer function

s+ 4
H(s) = TR
s+ 25"+ 55+ 10
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To find the response y(¢) of the system to input x(f) = 10e” ‘u(t), we
use the following MATLAB commands. Both the response y(f) and the
input x(¢7) are plotted in Fig. 14.61.

>>t=0:0.02:5; % time vector 0 < t<5with increment
0.02

>>x=10*exp(-t) ;

>>num= [1 4];

>>den=[1 2 5 10];

>>y=1sim(num,den,x,t);

>>plot(t,x,t,y)

x(1) )

-4 | | 1 1 | 1 1 1

|
0 05 1 1.5 2 25 3 35 4 45 5

Figure 14.61

The response of the system described by H(s) =
(s + 4)/(s* + 25" + 55 + 10) to an exponential
input.

14.12 T Applications

Resonant circuits and filters are widely used, particularly in electron-
ics, power systems, and communications systems. For example, a
Notch filter with a cutoff frequency at 60 Hz may be used to eliminate
the 60-Hz power line noise in various communications electronics. Fil-
tering of signals in communications systems is necessary in order to
select the desired signal from a host of others in the same range (as in
the case of radio receivers discussed next) and also to minimize the
effects of noise and interference on the desired signal. In this section,
we consider one practical application of resonant circuits and two
applications of filters. The focus of each application is not to under-
stand the details of how each device works but to see how the circuits
considered in this chapter are applied in the practical devices.

14.12.1 Radio Receiver

Series and parallel resonant circuits are commonly used in radio and TV
receivers to tune in stations and to separate the audio signal from the
radio-frequency carrier wave. As an example, consider the block diagram

657
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of an AM radio receiver shown in Fig. 14.62. Incoming amplitude-
modulated radio waves (thousands of them at different frequencies
from different broadcasting stations) are received by the antenna. A
resonant circuit (or a bandpass filter) is needed to select just one of the
incoming waves. The selected signal is very weak and is amplified in
stages in order to generate an audible audio-frequency wave. Thus, we
have the radio frequency (RF) amplifier to amplify the selected broad-
cast signal, the intermediate frequency (IF) amplifier to amplify an
internally generated signal based on the RF signal, and the audio ampli-
fier to amplify the audio signal just before it reaches the loudspeaker.
It is much easier to amplify the signal at three stages than to build an
amplifier to provide the same amplification for the entire band.

Carrier
frequency
Amplitude- Audio frequency
modulated
radio waves

800 kHz

|

Ganged tuning

Figure 14.62

11255
' kHz

] Audio to
5 kHz

i 455 kHz 455 kHz

Loudspeaker

A simplified block diagram of a superheterodyne AM radio receiver.

The type of AM receiver shown in Fig. 14.62 is known as the super-
heterodyne receiver. In the early development of radio, each amplifica-
tion stage had to be tuned to the frequency of the incoming signal. This
way, each stage must have several tuned circuits to cover the entire AM
band (540 to 1600 kHz). To avoid the problem of having several reso-
nant circuits, modern receivers use a frequency mixer or heterodyne cir-
cuit, which always produces the same IF signal (445 kHz) but retains
the audio frequencies carried on the incoming signal. To produce the
constant IF frequency, the rotors of two separate variable capacitors are
mechanically coupled with one another so that they can be rotated
simultaneously with a single control; this is called ganged tuning. A
local oscillator ganged with the RF amplifier produces an RF signal that
is combined with the incoming wave by the frequency mixer to produce
an output signal that contains the sum and the difference frequencies of
the two signals. For example, if the resonant circuit is tuned to receive an
800-kHz incoming signal, the local oscillator must produce a 1.255-kHz
signal, so that the sum (1,255 + 800 = 2,055 kHz) and the difference
(1,255 — 800 = 455 kHz) of frequencies are available at the output of
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the mixer. However, only the difference, 455 kHz, is used in practice.
This is the only frequency to which all the IF amplifier stages are tuned,
regardless of the station dialed. The original audio signal (containing
the “intelligence™) is extracted in the detector stage. The detector basi-
cally removes the IF signal, leaving the audio signal. The audio signal
is amplified to drive the loudspeaker, which acts as a transducer con-
verting the electrical signal to sound.

Our major concern here is the tuning circuit for the AM radio
receiver. The operation of the FM radio receiver is different from that
of the AM receiver discussed here, and in a much different range of
frequencies, but the tuning is similar.

659

The resonant or tuner circuit of an AM radio is portrayed in Fig. 14.63.
Given that L = 1 uH, what must be the range of C to have the reso-
nant frequency adjustable from one end of the AM band to another?

Solution:

The frequency range for AM broadcasting is 540 to 1,600 kHz. We
consider the low and high ends of the band. Since the resonant circuit
in Fig. 14.63 is a parallel type, we apply the ideas in Section 14.6.
From Eq. (14.44),

. 1
wy=27fh = —F—

VLC
or
B 1
4m’f3L
For the high end of the AM band, f;, = 1,600 kHz, and the corresponding
Cis
B 1
4m? X 1,600 X 10° x 107°

G = 9.9 nF

For the low end of the AM band, f, = 540 kHz, and the corresponding
Cis

1

= = 86.9 nF
472 X 540% X 10° X 107°

&

Thus, C must be an adjustable (gang) capacitor varying from 9.9 nF to
86.9 nF.

Example 14.17

T RF amplifier

'
0y
00
=~
ANV
=

B i :

Input resistance
to amplifier

Figure 14.63
The tuner circuit for Example 14.17.

For an FM radio receiver, the incoming wave is in the frequency range
from 88 to 108 MHz. The tuner circuit is a parallel RLC circuit with a
4-pH coil. Calculate the range of the variable capacitor necessary to
cover the entire band.

Answer: From 0.543 pF to 0.818 pF.

Practice Problem 14.17
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14.12.2 Touch-Tone Telephone

A typical application of filtering is the touch-tone telephone set
shown in Fig. 14.64. The keypad has 12 buttons arranged in four rows
and three columns. The arrangement provides 12 distinct signals by
using seven tones divided into two groups: the low-frequency group
(697 to 941 Hz) and the high-frequency group (1,209 to 1,477 Hz).
Pressing a button generates a sum of two sinusoids corresponding
to its unique pair of frequencies. For example, pressing the number
6 button generates sinusoidal tones with frequencies 770 Hz and
1,477 Hz.

697 Hz

-
F

ABC DEF

770 Hz

-

JKL

852 Hz

Low-band frequencies

amw
B
-

TUV

| 941 Hz

B

OP[ER
1209 Hz 1336 Hz 1477 Hz

High-band frequencies

Figure 14.64

Frequency assignments for touch-tone dialing.
Adapted from G. Daryanani, Principles of Active Network
Synthesis and Design [New York: John Wiley & Sons],
1976, p. 79.

When a caller dials a telephone number, a set of signals is trans-
mitted to the telephone office, where the touch-tone signals are
decoded by detecting the frequencies they contain. Figure 14.65
shows the block diagram for the detection scheme. The signals are
first amplified and separated into their respective groups by the low-
pass (LP) and highpass (HP) filters. The limiters (L) are used to con-
vert the separated tones into square waves. The individual tones are
identified using seven bandpass (BP) filters, each filter passing one
tone and rejecting other tones. Each filter is followed by a detector
(D), which is energized when its input voltage exceeds a certain
level. The outputs of the detectors provide the required dc signals
needed by the switching system to connect the caller to the party
being called.
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e . e . 697 Hz
” .—’.—> 770 Hz
Low-group
i " signals
Lowpass Limiter . .—".—> 852 Hz
filter
2 .—'.—> 941 Hz
*E_ Bandpass  Detectors
filters
Amplifier
" .—“.—* 1209 Hz
—t High-
- e
Highpass  Limiter
e N -

Bandpass  Detectors
filters

Figure 14.65

Block diagram of detection scheme.

G. Daryanani, Principles of Active Network Synthesis and Design [New York: John Wiley & Sons],
1976, p. 79.

Using the standard 600-Q) resistor used in telephone circuits and a Example 14.18
series RLC circuit, design the bandpass filter BP, in Fig. 14.65.

Solution:

The bandpass filter is the series RLC circuit in Fig. 14.35. Since BP,
passes frequencies 697 Hz to 852 Hz and is centered at f; = 770 Hz,
its bandwidth is

B=2m(fs — fi) = 2m(852 — 697) = 973.89 rad/s
From Eq. (14.39),

R 600
L= = 97359 = 0:616H
From Eq. (14.27) or (14.55),
C= I ) 2 = 69.36 nF

T Wil 47l 4w X 7707 X 0.616

Repeat Example 14.18 for bandpass filter BPs. Practice Problem 14

Answer: 0.356 H, 39.83 nF.

14.12.3 Crossover Network

Another typical application of filters is the crossover network that
couples an audio amplifier to woofer and tweeter speakers, as shown
in Fig. 14.66(a). The network basically consists of one highpass RC
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€ Tweeter

One channel
of a stereo
amplifier

(b)
Figure 14.66
(a) A crossover network for two
loudspeakers, (b) equivalent model.

Hy(w) Hy(w)

v

[ [0

Figure 14.67
Frequency responses of the crossover
network in Fig. 14.66.

Chapter 14  Frequency Response

filter and one lowpass RL filter. It routes frequencies higher than a
prescribed crossover frequency f. to the tweeter (high-frequency
loudspeaker) and frequencies below f. into the woofer (low-frequency
loudspeaker). These loudspeakers have been designed to accommo-
date certain frequency responses. A woofer is a low-frequency loud-
speaker designed to reproduce the lower part of the frequency range,
up to about 3 kHz. A tweeter can reproduce audio frequencies from
about 3 kHz to about 20 kHz. The two speaker types can be com-
bined to reproduce the entire audio range of interest and provide the
optimum in frequency response.

By replacing the amplifier with a voltage source. the approximate
equivalent circuit of the crossover network is shown in Fig. 14.66(b).
where the loudspeakers are modeled by resistors. As a highpass filter,
the transfer function V,/V; is given by
Vi JoR\C

f'ﬁ((ﬂ) =1

V. 1+ jwR,C (14.87)

Similarly, the transfer function of the lowpass filter is given by
I/'i ie'l

Hy(w) = V. = m (14.88)

The values of Ry, R». L, and C may be selected such that the two filters
have the same cutoff frequency, known as the crossover frequency, as
shown in Fig. 14.67.

The principle behind the crossover network is also used in the res-
onant circuit for a TV receiver, where it is necessary to separate the
video and audio bands of RF carrier frequencies. The lower-frequency
band (picture information in the range from about 30 Hz to about
4 MHz) is channeled into the receiver’s video amplifier, while the high-
frequency band (sound information around 4.5 MHz) is channeled to
the receiver’s sound amplifier.

" Example 14.19

In the crossover network of Fig. 14.66, suppose each speaker acts as
a 6-() resistance. Find C and L if the crossover frequency is 2.5 kHz.

Solution:
For the highpass filter,

1
=2nf. = ——
wt_ w./l‘. RIC
or
= l = ! = 10.61 uF
2mfR 2w X25X10°x6 0
For the lowpass filter,
Ry
=2mf, = —
w, =2mf. =
or
R 6
2 = 382 uH

L b— - ——
2@f, 27 X 2.5 X% 10°
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If each speaker in Fig. 14.66 has an 8-() resistance and C = 10 uF,
find L and the crossover frequency.

Answer: 0.64 mH, 1.989 kHz.

14.13  Summary

2

10.

. The transfer function H(w) is the ratio of the output response Y(w)

to the input excitation X(w); that is, H(w) = Y(w)/X(w).
The frequency response is the variation of the transfer function
with frequency.

. Zeros of a transfer function H(s) are the values of s = jw that make

H(s) = 0, while poles are the values of s that make H(s) — .

. The decibel is the unit of logarithmic gain. For a voltage or current

gain G, its decibel equivalent is Gy = 20 log, G.

. Bode plots are semilog plots of the magnitude and phase of the

transfer function as it varies with frequency. The straight-line
approximations of H (in dB) and ¢ (in degrees) are constructed
using the corner frequencies defined by the poles and zeros of H(w).

. The resonant frequency is that frequency at which the imaginary part

of a transfer function vanishes. For series and parallel RLC circuits.

1
VLC

Wy =

. The half-power frequencies (w,, w,) are those frequencies at which

the power dissipated is one-half of that dissipated at the resonant
frequency. The geometric mean between the half-power frequen-
cies is the resonant frequency, or

Wy = Vwsy

. The bandwidth is the frequency band between half-power

frequencies:

B=0Jg—w1

. The quality factor is a measure of the sharpness of the resonance

peak. It is the ratio of the resonant (angular) frequency to the
bandwidth,

Wy

=%

A filter is a circuit designed to pass a band of frequencies and
reject others. Passive filters are constructed with resistors, capaci-
tors, and inductors. Active filters are constructed with resistors,
capacitors, and an active device, usually an op amp.

. Four common types of filters are lowpass, highpass, bandpass, and

bandstop. A lowpass filter passes only signals whose frequencies are
below the cutoff frequency w,.. A highpass filter passes only signals
whose frequencies are above the cutoff frequency w... A bandpass
filter passes only signals whose frequencies are within a prescribed

Practice Problem 14.19
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range (w; < @ < w-). A bandstop filter passes only signals whose
frequencies are outside a prescribed range (w; > @ > w,).

. Scaling is the process whereby unrealistic element values are

magnitude-scaled by a factor K,,, and/or frequency-scaled by a fac-
tor K to produce realistic values.
KJN 1

L, C =
KJ' KmK."'

R=K,R, L= ¢

. PSpice can be used to obtain the frequency response of a circuit

if a frequency range for the response and the desired number of
points within the range are specified in the AC Sweep.

. The radio receiver—one practical application of resonant circuits—

employs a bandpass resonant circuit to tune in one frequency
among all the broadcast signals picked up by the antenna.

15. The touch-tone telephone and the crossover network are two typi-
cal applications of filters. The touch-tone telephone system employs
filters to separate tones of different frequencies to activate elec-
tronic switches. The crossover network separates signals in differ-
ent frequency ranges so that they can be delivered to different
devices such as tweeters and woofers in a loudspeaker system.

~ Review Questions
14.1 A zero of the transfer function (a) 0 =20 (b)yQ =12
Hs) 10(s + 1) (c)@=28 Q=4
T ]
(s + 2)(s + 3) 14.7 Ina parallel RLC circuit, the bandwidth B is directly
T proportional to R.
(a) 10 (b) —1 © -2 (d)-3 (a) True (b) False

14.2  On the Bode magnitude plot, the slope of 1/(5 + jw)?

for large values of w is

(a) 20 dB/decade (b) 40 dB/decade
(c) —40 dB/decade (d) —20 dB/decade

14.3  On the Bode phase plot for 0.5 < @ < 50, the slope

of [1 + jl10w — @*/25]7 is

(a) 45°/decade (b) 90°/decade
(c) 135%decade (d) 180°/decade

14.8 When the elements of an RLC circuit are both
magnitude-scaled and frequency-scaled, which
quality is unaffected?

(a) resistor (b) resonant frequency
(c) bandwidth (d) quality factor

14.9  What kind of filter can be used to select a signal of
one particular radio station?

(a) lowpass (b) highpass
(c) bandpass (d) bandstop

14.4 How much inductance is needed to resonate at 5 kHz

with a capacitance of 12 nF?

14.10 A voltage source supplies a signal of constant
amplitude, from 0 to 40 kHz, to an RC lowpass filter.

(a) 2,652 H (b) 11.844 H A load resistor, connected in parallel across the
(c)3.333H (d) 84.43 mH capacitor, experiences the maximum voltage at:
14.5 The difference between the half-power frequencies is (a) de (b) 10 kHz
called the: (¢) 20 kHz (d) 40 kHz
(a) quality factor (b) resonant frequency
(c) bandwidth (d) cutoff frequency
14.6 Ina series RLC circuit, which of these quality factors
has the steepest magnitude response curve near Answers: 14.1b, 14.2¢, 14.3d, 14.4d, 14.5¢, 14.6a,

resonance?

14.7b, 14.8d, 14.9¢, 14.10a.
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Section 14.2 Transfer Function

14.1  Find the transfer function V,/V, of the RC circuit

in Fig. 14.68. Express it using wy = 1/RC.

&
N
vi(0) RZ v,(0)

Figure 14.68
For Prob. 14.1.

14.2  Using Fig. 14.69, design a problem to help other

efd students better understand how to determine
transfer functions.
R
+
RE Va
\ -
C
Figure 14.69
For Prob. 14.2.
14.3  Given the circuit in Fig. 14.70, R, = 2 Q, R, = 5 (),

C, = 0.1 F,and C; = 0.2 F, determine the transfer
function H(s) = V,(5)/V(s).

Ry
+
T C2 —‘7 “’rj

Find the transfer function H(w) = V,/V, of the
circuits shown in Fig. 14.71.

Figure 14.70
For Prob. 14.3.

14.4

%

o
Il
11
o}
=
=

o
(o]

(a)

C
o If o
+ +
R
V; v,
L
o o

(b)
Figure 14.71
For Prob. 14.4,

14.5  For each of the circuits shown in Fig. 14.72, find

H(s) = V(s)/V(s).

R.\'

Figure 14.72
For Prob. 14.5.

14.6  For the circuit shown in Fig. 14.73, find H(s) =
L(5)/1(s).
I H
l lﬂ
+
I 1Q v, S 1H 1Q

Figure 14.73
For Prob. 14.6.

Section 14.3 The Decibel Scale

14.7  Calculate [H(w)| it Hyp equals
(a) 0.05 dB (b) —6.2dB (c) 104.7 dB
14.8  Design a problem to help other students
efd calculate the magnitude in dB and phase in

degrees of a variety of transfer functions at a
single value of w.

Section 14.4 Bode Plots

14.9 A ladder network has a voltage gain of

10

B@) =4 ¥ j0)(10 + jw)

Sketch the Bode plots for the gain.
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14.10

14.11

14.12

14.13
14.14
14.15
14.16
14.17

14.18

H
ML

14.19

Chapter 14

Design a problem to help other students better
understand how to determine the Bode magnitude
and phase plots of a given transfer function in
terms of jw.

Sketch the Bode plots for

10 + jw

Blw) = jo2 + jo)

A transfer function is given by

Sketch the magnitude and phase Bode plots.

Construct the Bode plots for

Gs) s+1 .
) e — w
s(s + 10) 4
Draw the Bode plots for
50(jw + 1
H(w) = Ve )

Jjo(—w® + 10jw + 25)
Construct the Bode magnitude and phase plots for

40(s + 1)

HS) = 26 + 10y

=Jjo

Sketch Bode magnitude and phase plots for
10

Hs)=—F5—"—, s=jo
© s(s” + 5 + 16) !
Sketch the Bode plots for
Gs) = ——3——  s=jo

s+ 2%+ 1)
A linear network has this transfer function

752+ s+ 4
£+ 82+ 145 + 5

H(s) = 5 = jw
Use MATLAB or equivalent to plot the magnitude
and phase (in degrees) of the transfer function.
Take 0.1 < @ < 10 rad/s.

Sketch the asymptotic Bode plots of the magnitude
and phase for

14.20

ed

14.21

14.22

H(dB) 4

Frequency Response

Design a more complex problem than given in
Prob. 14.10, to help other students better
understand how to determine the Bode magnitude
and phase plots of a given transfer function in
terms of jw. Include at least a second order
repeated root.

Sketch the magnitude Bode plot for
s(s + 20)

H(s) = 5 )
(s + 1)(s” + 60s + 400)

5= jw

Find the transfer function H(w) with the Bode
magnitude plot shown in Fig. 14.74.

~20 dB/decade

/

40

20

0

10 100 1000 o (rad/s)

Figure 14.74
For Prob. 14.22.

14.23

The Bode magnitude plot of H(w) is shown in
Fig. 14.75. Find H(w).

H (dB)

0 |
1 10 100
it
+20 dB/decade
i

—40 dB/decade

w (radls)

Figure 14.75
For Prob. 14.23.

B 100s o 14.24
) = G T 10)G + 2006 + 40)° —4%
H(dB) 4
40 20 dB/decade

/

The magnitude plot in Fig. 14.76 represents the
transfer function of a preamplifier. Find H(s).

2,122 @
L

Figure 14.76
For Prob. 14.24.

500

WB’Idecade



Section 14.5 Series Resonance

14.25

14.26

2

14.27

2

14.28

14.29

A series RLC network has R = 2 k(), L = 40 mH,
and C = | pF. Calculate the impedance at
resonance and at one-fourth, one-half, twice, and
four times the resonant frequency.

Design a problem to help other students better
understand wy, O, and B at resonance in series
RLC circuits.

Design a series RLC resonant circuit with @, =
40 rad/s and B = 10 rad/s.

Design a series RLC circuit with 8 = 20 rad/s and
wy = 1,000 rad/s. Find the circuit’s Q. Let
R =10Q.

Letv, = 120 cos(ar) V in the circuit of Fig. 14.77.
Find @y, 0. and B, as seen by the capacitor.

12 kQ2

” 45kQ

— | uF 60 mH

Figure 14.77
For Prob. 14.29.

14.30

A circuit consisting of a coil with inductance 10 mH
and resistance 20 ) is connected in series with a
capacitor and a generator with an rms voltage of
120 V. Find:

(a) the value of the capacitance that will cause the
circuit to be in resonance at 15 kHz

(b) the current through the coil at resonance
(c) the O of the circuit

Section 14.6 Parallel Resonance

14.31
eqd

14.32

eud

14.33

14.34

Design a parallel resonant RLC circuit with
wg = 10 rad/s and Q = 20. Calculate the
bandwidth of the circuit. Let R = 10 Q.

Design a problem to help other students better
understand the quality factor, the resonant
frequency, and bandwidth of a parallel RLC circuit.

A parallel resonant circuit with quality factor 120 has
a resonant frequency of 6 X 10° rad/s. Calculate the
bandwidth and half-power frequencies.

A parallel RLC circuit is resonant at 5.6 MHz, has a
O of 80, and has a resistive branch of 40 k().
Determine the values of L and C in the other two
branches.

Problems

14.35

14.36

14.37

14.38

667

A parallel RLC circuit has R = 5 k{), L = 8 mH,
and C = 60 uF. Determine:

(a) the resonant frequency
(b) the bandwidth
(c) the quality factor

It is expected that a parallel RLC resonant circuit
has a midband admittance of 25 X 10™* S, quality
factor of 80, and a resonant frequency of 200 krad/s.
Calculate the values of R, L, and C. Find the
bandwidth and the half-power frequencies.

Rework Prob. 14.25 if the elements are connected
in parallel.

Find the resonant frequency of the circuit in
Fig. 14.78.

Figure 14.78
For Prob. 14.38.

14.39

For the “tank™ circuit in Fig. 14.79, find the
resonant frequency.

= 1 uF

1, cos wt (D

Figure 14.79
For Probs. 14.39 and 14.91.

14.40

14.41

A parallel resonance circuit has a resistance of
2 k€2 and half-power frequencies of 86 kHz and
90 kHz. Determine:

(a) the capacitance

(b) the inductance

(c) the resonant frequency

(d) the bandwidth

(e) the quality factor

Using Fig. 14.80, design a problem to help

other students better understand the quality factor,
the resonant frequency, and bandwidth of RLC
circuits.
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R, 30 kQ
O ¥
fge R, i v, 50 uF == 10mH 50 kQ
o
Figure 14.80 Figure 14.84
For Prob. 14.41. For Prob. 14.45.
1442 Forthecsmts i Fig. LLA1, fod theresmnant 14.46 For the network illustrated in Fig. 14.85, find
frequency wy, the quality factor O, and the
bandwidth B. (a) the transfer function H(w) = V (w)/I(w),
(b) the magnitude of H at w, = | rad/s.
2Q
o
3 - 1Q
1H 3 uF
20 mH 2@ | R "
6Q  =04F T RE I Q% 1H If== 103V,
(a) (b)

Figure 14.81
For Prob. 14.42.

14.43  Calculate the resonant frequency of each of the

circuits in Fig. 14.82,
L C
o.—..
5 R R L
Oo—
(b)
*14.44 For the circuit in Fig. 14.83, find:

(a)
Figure 14.82
For Prob. 14.43.

(a) the resonant frequency wy
(b) Zin(wo)

9 uF

1|
g 1]

—— 1Q 20 mH 0.1Q

Figure 14.83
For Prob. 14.44.

14.45  For the circuit shown in Fig. 14.84, find w, B, and
0, as seen by the voltage across the inductor.

* An asterisk indicates a challenging problem.

Figure 14.85
For Probs. 14.46, 14.78, and 14.92.

Section 14.7 Passive Filters

14.47 Show that a series LR circuit is a lowpass filter if
the output is taken across the resistor. Calculate the
corner frequency f.if L = 2mH and R = 10 k().

14.48 Find the transfer function V,/V, of the circuit in

Fig. 14.86. Show that the circuit is a lowpass filter.

I H

S

Uy 025Q 1F=

I

Figure 14.86
For Prob. 14.48.

14.49  Design a problem to help other students better

efdl understand lowpass filters described by transfer
functions.

14.50 Determine what type of filter is in Fig. 14.87.

Calculate the corner frequency f,.

200 Q

Figure 14.87
For Prob. 14.50.



14.56

14.57

Design an RL lowpass filter that uses a 40-mH coil
and has a cutoff frequency of 5 kHz.

Design a problem to help other students better
understand passive highpass filters.

Design a series RLC type bandpass filter with
cutoff frequencies of 10 kHz and 11 kHz.
Assuming C = 80 pF, find R, L, and Q.

Design a passive bandstop filter with w, = 10 rad/s
and 0 = 20.

Determine the range of frequencies that will be
passed by a series RLC bandpass filter with

R =106, L = 25mH, and C = 0.4 uF. Find the
quality factor.

(a) Show that for a bandpass filter,
sB

H(-“) =5 3
s+ 5B + wy

5= jw

where B = bandwidth of the filter and w, is the
center frequency.

(b) Similarly, show that for a bandstop filter,
H(s) =
¢

Determine the center frequency and bandwidth of
the bandpass filters in Fig. 14.88.

1Q I F
2
¥, == ['F 1QsV,
(a)
1H 1Q
4
v, 1Q IHSV

(b)

Figure 14.88
For Prob. 14.57.

14.58

14.59

The circuit parameters for a series RLC bandstop
filterare R = 2k, L = 0.1 H, C = 40 pF.
Calculate:

(a) the center frequency

(b) the half-power frequencies

(c) the quality factor

Find the bandwidth and center frequency of the
bandstop filter of Fig. 14.89.

Problems 669
60
4 uF a
\7/ 4Q g Vo
1 mH

Figure 14.89
For Prob. 14.59.

Section 14.8 Active Filters

14.60

14.61

Obtain the transfer function of a highpass filter
with a passband gain of 10 and a cutoff frequency
of 50 rad/s.

Find the transfer function for each of the active
filters in Fig. 14.90.

2 a—
g—NV\NT-"' ¥
Y Y

- C 0

o o
(a)

o ic —0

+ +

o R Yo

o T o

(b)

Figure 14.90
For Probs. 14.61 and 14.62.

14.62

14.63

14.64

The filter in Fig. 14.90(b) has a 3-dB cutoff’
frequency at 1 kHz. If its input is connected to a
120-mV variable frequency signal, find the output
voltage at:

(a) 200 Hz (b) 2 kHz (c) 10 kHz

Design an active first-order highpass filter with

100s

HE) =~ 0

§ = jo

Use a 1-uF capacitor.

Obtain the transfer function of the active filter in
Fig. 14.91 on the next page. What kind of filter is it?
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R 14.67 Design an active lowpass filter with de gain of 0.25
—AAAA— efd and a corner frequency of 500 Hz.
Cr 14.68 Design a problem to help other students better
c I efd understand the design of active highpass filters
Ry {‘_ when specifying a high-frequency gain and a
+ :i>——_?_ corner frequency.
v v, 14.69 Design the filter in Fig. 14.94 to meet the following
- _ efd requirements:
o o

Figure 14.91
For Prob. 14.64.

14.65 A highpass filter is shown in Fig. 14.92. Show that
the transfer function is

- —(I i Rf) JoRC
@)= R} 1 + joRC

c
o—f

Figure 14.92
For Prob. 14.65.

14.66 A ““general” first-order filter is shown in Fig. 14.93.

(a) Show that the transfer function is
R4 s+ (1/RO)R/R> — R3/R4]
R; + R, s+ 1/R:C !

§ = jw

H(s) =

(b) What condition must be satisfied for the circuit
to operate as a highpass filter?

(c) What condition must be satisfied for the circuit
to operate as a lowpass filter?

Ry
AV
C
n
I
Ry
U O ANV =
Lo,
+ {
Ry

Ry

Figure 14.93
For Prob. 14.66.

(a) It must attenuate a signal at 2 kHz by 3 dB
compared with its value at 10 MHz.

(b) It must provide a steady-state output of v,(f) =
10 sin(27 X 10% + 180°) V for an input
vf) = 4sin2mw X 10%) V.

R

= 4

Q1

Figure 14.94
For Prob. 14.69.

*14.70

ed

A second-order active filter known as a Butterworth
filter is shown in Fig. 14.95.

(a) Find the transfer function V,/V,.
(b) Show that it is a lowpass filter.

G

Il

Il
o—\WW ANV ™ PN
= +
“'r, == V,,
o )

Figure 14.95
For Prob. 14.70.

Section 14.9 Scaling

14.71 Use magnitude and frequency scaling on the circuit
of Fig. 14.76 to obtain an equivalent circuit in
which the inductor and capacitor have magnitude
1 Hand 1 F respectively.

14.72  Design a problem to help other students better

efd understand magnitude and frequency scaling.

14.73 Calculate the values of R, L. and C that will result

inR = 12k}, L = 40 uH, and C = 300 nF
respectively when magnitude-scaled by 800 and
frequency-scaled by 1000.



14.74 Acircuithas R, = 3Q, R, = 108}, L = 2H, and
C = 1/10F. After the circuit is magnitude-scaled
by 100 and frequency-scaled by 10°, find the new

values of the circuit elements.

14.75 Inan RLC circuit, R = 200, L = 4 H, and

C = 1 F. The circuit is magnitude-scaled by 10 and

frequency-scaled by 10°. Calculate the new values
of the elements.

Given a parallel RLC circuit with R = 5 k{2,

L = 10 mH, and C = 20 pF, if the circuit is
magnitude-scaled by K, = 500 and frequency-
scaled by K, = 10°, find the resulting values of
R.L,and C.

A series RLC circuit has R = 10 £, wy = 40 rad/s,
and B = 5 rad/s. Find L and C when the circuit is
scaled:

14.76

14.77

(a) in magnitude by a factor of 600,

(b) in frequency by a factor of 1,000,

(c) in magnitude by a factor of 400 and in
frequency by a factor of 10°,

14.78 Redesign the circuit in Fig. 14.85 so that all
resistive elements are scaled by a factor of 1,000
and all frequency-sensitive elements are frequency-

scaled by a factor of 10*,

*14.79 Refer to the network in Fig. 14.96.

(a) Find Z;, ().
(b) Scale the elements by K, = 10 and K, = 100.

Find Z;,(s) and wy,.
40
5Q 0.1F
[2 ;:l +
Zi(s)
e 3V, 2H % v,
o

Figure 14.96
For Prob. 14.79.

14.80 (a) For the circuit in Fig. 14.97, draw the new
circuit after it has been scaled by K,, = 200 and
K= 10%

(b) Obtain the Thevenin equivalent impedance
at terminals a-b of the scaled circuit at
w = 10" rad/s.

1 H
ao n—
*1_‘.

= 05F 20 0.51,

b o

Figure 14.97
For Prob. 14.80.

Problems 671

14.81 The circuit shown in Fig. 14.98 has the impedance
Zs) = 1.000(s + 1) L
D= 11506+ 150 ST

Find:
(a) the values of R, L, C, and G

(b) the element values that will raise the resonant
frequency by a factor of 10® by frequency scaling

(e

Il
I
0

Z(s) &

Figure 14.98
For Prob. 14.81.

14.82  Scale the lowpass active filter in Fig. 14.99 so
that its corner frequency increases from 1 rad/s to
200 rad/s. Use a 1-uF capacitor.

2Q
—AMM—
1 F
Il
I
1Q
O'—J\N\N—:l: > 0
* +
v“ vu
o + o

Figure 14.99
For Prob. 14.82.
14.83 The op amp circuit in Fig. 14.100 is to be
magnitude-scaled by 100 and frequency-scaled by
10°. Find the resulting element values.

1 uF
Il
I

10kQ | 20 kQ

s
v S5 uF == v,

Figure 14.100
For Prob. 14.83.

Section 14.10 Frequency Response Using PSpice
<
PSs
14.84 Using PSpice, obtain the frequency response of the
circuit in Fig. 14.101 on the next page.
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4k 1HF
o—wi—i| ;
+ +
v, 1k V,

-]

8]
(o}]

Figure 14.101
For Prob. 14.84.

14.85 Use PSpice to obtain the magnitude and phase plots
of V,,/1, of the circuit in Fig. 14.102.

10 nF

+
100Q = v

]

I 200 Q 30 mH

Figure 14.102
For Prob. 14.85.

14.86

equd

Using Fig. 14.103, design a problem to help other
students better understand how to use PSpice to
obtain the frequency response (magnitude and
phase of T) in electrical circuits.

Ry Ry
Mty
1
= ¢ kv, L

In the interval 0.1 < << 100 Hz, plot the
response of the network in Fig. 14.104. Classify
this filter and obtain wy,.

R,

-
| &S+
||

Figure 14.103
For Prob. 14.86.

14.87

1F 1.E 1 F

Figure 14.104
For Prob. 14.87.

14.88 Use PSpice to generate the magnitude and phase
Bode plots of V,, in the circuit of Fig. 14.105.

1Q 2H 2F

1/0°V

Figure 14.105
For Prob. 14.88.

Frequency Response

14.89  Obtain the magnitude plot of the response V,, in the
network of Fig. 14.106 for the frequency interval
100 < /<< 1,000 Hz.

+

1£0° A

Figure 14.106
For Prob. 14.89.

14.90 Obtain the frequency response of the circuit in
Fig. 14.40 (see Practice Problem 14.10). Take R, =
Ry = 1008, L = 2mH. Use | < f < 100,000 Hz.

14.91 For the “tank™ circuit of Fig. 14.79, obtain the
frequency response (voltage across the capacitor)
using PSpice. Determine the resonant frequency of
the circuit.

14.92  Using PSpice, plot the magnitude of the frequency

response of the circuit in Fig. 14.85.

Section 14.12 Applications

14.93  For the phase shifter circuit shown in Fig. 14.107,
findH = V,/V..

i
“® :

R

R .,
C
_|_

Figure 14.107
For Prob. 14.93.

14.94 For an emergency situation, an engineer needs
efJ)d to make an RC highpass filter. He has one
10-pF capacitor, one 30-pF capacitor, one
1.8-k() resistor, and one 3.3-k(} resistor available.
Find the greatest cutoff frequency possible using
these elements.

A series-tuned antenna circuit consists of a
variable capacitor (40 pF to 360 pF) and a
240-p.H antenna coil that has a dc resistance
of 12 ).

(a) Find the frequency range of radio signals to
which the radio is tunable.

(b) Determine the value of Q at each end of the
frequency range.



Comprehensive Problems

14.96 The crossover circuit in Fig. 14.108 is a lowpass
filter that is connected to a woofer. Find the transfer

function H(w) = V,(@)/V ().

Tweeter

Amplifier

R

L

Speakers

1

+
Ry =Y,

Figure 14.108
For Prob. 14.96.
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14.97  The crossover circuit in Fig. 14,109 is a highpass
filter that is connected to a tweeter. Determine the
transfer function H(w) = V (w)/V;(w).

@ Tweeter

' )| Woofer

Amplifier E E
R; E ﬁt &) E Speakers
: —
" ) *
\/ : L RLZV

Figure 14.109
For Prob. 14.97.

14.98

A certain electronic test circuit produced a resonant
curve with half-power points at 432 Hz and 454 Hz.
If O = 20, what is the resonant frequency of the
circuit?

14.99 In an electronic device, a series circuit is employed
that has a resistance of 100 (), a capacitive
reactance of 5 k), and an inductive reactance of
300 €2 when used at 2 MHz. Find the resonant
frequency and bandwidth of the circuit.

14.100 In a certain application, a simple RC lowpass filter
is designed to reduce high frequency noise. If
the desired corner frequency is 20 kHz and

C = 0.5 uF, find the value of R.

14.101 Inan amplifier circuit, a simple RC highpass filter
is needed to block the de component while passing
the time-varying component. If the desired rolloff
frequency is 15 Hz and C = 10 uF, find the value

of R.

14.102 Practical RC filter design should allow for source
and load resistances as shown in Fig. 14.110. Let
R = 4k and C = 40-nF. Obtain the cutoff

frequency when:
(a} R.\' = 0! RL =,
(b) R, = 1 kQ, R, = 5 k.

Figure 14.110
For Prob. 14.102.

14.103 The RC circuit in Fig. 14.111 is used for a lead
compensator in a system design. Obtain the transfer
function of the circuit.

c
i
i
R
og ANV O
From * * To
photoresistor 'V, Ry b amplifier
output input
o )

Figure 14.111
For Prob. 14.103.

14.104 A low-quality-factor, double-tuned bandpass filter

@5  isshown in Fig. 14.112. Use PSpice to generate the
PS  magnitude plot of Vo(@).
40Q 0.2 uF
[
il 9
1.24 mH
40
1£0°V 2 uF =— A
0.124 mH
o

Figure 14.112
For Prob. 14.104.



