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Conventional constant false alarm rate (CFAR) methods use a fixed number of cells to estimate the
background variance. For homogeneous environments, it is desirable to increase the number of cells,
at the cost of increased computation and memory requirements, in order to improve the estimation
performance. For nonhomogeneous environments, it is desirable to use less number of cells in order to
reduce the number of false alarms around the clutter edges. In this work, we present a solution with two
exponential smoothers (first order IIR filters) having different time-constants to leverage the conflicting
requirements of homogeneous and nonhomogeneous environments. The system is designed to use the
filter having the large time-constant in homogeneous environments and to promptly switch to the filter
having the small time constant once a clutter edge is encountered. The main advantages of proposed
Switching IIR CFAR method are computational simplicity, small memory requirement (in comparison to
windowing based methods) and its good performance in homogeneous environments (due to the large
time-constant smoother) and rapid adaptation to clutter edges (due to the small time-constant smoother).

© 2012 Elsevier Inc. All rights reserved.
1. Introduction

Maintaining a constant false alarm rate (CFAR) is an important
task especially for modern radar systems which can simultaneously
follow a multitude of targets while conducting a search for newly
emerging ones. This task is, in general, accomplished by adaptive
receivers. Adaptive receivers estimate the disturbance level by pro-
cessing some auxiliary data and adjust the detection threshold ac-
cordingly to ensure a constant false alarm rate. Conventional CFAR
systems use a finite number of samples around the cell of inter-
est for this purpose. It is well known that a better estimate of the
disturbance level can be produced with a larger number of sam-
ples provided that the statistics of the environment stays the same,
i.e. in homogeneous environments. For nonhomogeneous environ-
ments, increasing the number of samples does not immediately
result in a performance improvement. A large number of CFAR
techniques have been proposed in the literature to improve the
estimation performance in nonhomogeneous environments with a
negligible loss of performance in the homogeneous case.

In this paper, we present a CFAR technique with very low com-
putational and memory requirements, which is especially suitable
for real-time embedded applications. The proposed technique uses
two exponential smoothers (first order IIR filters) with different
time-constants to estimate the disturbance level. In homogeneous
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environments, the estimator with larger time-constant (which we
call as the ‘slow filter’) is utilized to provide a highly accurate es-
timate of the disturbance level based on a long-term average. In
nonhomogeneous environments, the system switches to the fast
filter, which has a much smaller time-constant, as soon as an
abrupt change, such as a clutter edge, is encountered. This system
is causal and has the memory requirement of a single accumulator
and the computational requirement of 2 multiplications per output
sample for each filter. In this paper, we examine the performance
of the described system in different environments.

In the literature, many CFAR systems have been proposed. The
first example of a CFAR detector can be found in Finn and John-
son [1] where an arithmetic mean detector, namely, Cell Averaging
CFAR (CA-CFAR) is analyzed. This detector is shown to be opti-
mal in the presence of spatially homogeneous environment but its
performance degrades significantly at multiple target situations [2]
and at the clutter edges [3]. Some robustness against nonhomoge-
neous environments can be attained by order-statistics (OS) based
CFAR algorithms [4].

In addition to the order-statistics based methods, data censor-
ing has been applied to lessen the effect of the inhomogeneities
in the collected data. Fixed censoring methods such as Censored
Mean Level Detector (CMLD) [2] are effective against multiple tar-
gets, however, a priori information is required for the proper cen-
soring of the outliers. This led to the development of automatic
censoring methods such as A-CMLD and GTL-CMLD [5]. Recently,
the concept of variability index is introduced in [6] and this idea
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Fig. 1. Detection using an IIR filter.
is incorporated in automatic censoring [7,8]. Other methods based
on Fuzzy CFAR detectors have also been proposed in [9–11].

Conventional CFAR methods, such as the ones mentioned above,
utilize a set of reference samples around a test cell for background
estimation and to declare the presence or the absence of the target.
The detection threshold is formed by the elements of the reference
set and then the cell under test is compared with this threshold.
The process is repeated for all test cells of interest. Typically, a slid-
ing window containing the reference and the test cells are utilized
for this purpose. Sliding windows require data storage of at least
the number of cells in the window, which can be a significant re-
quirement for many practical systems. The storage requirement can
be reduced by using an exponential smoothing filter [12].

The background estimate with an exponential smoothing filter
y[n] is formed by a weighted average of the square law detected
range samples z[n] and the previous background estimate y[n − 1]
as shown below:

y[n] = γ y[n − 1] + (1 − γ )z[n] (1)

This type of exponential smoother is used in Nitzberg [12], Lops
[13,14] and [15]. These techniques (namely Clutter Map CFAR or
CM-CFAR) average the detector outputs at each resolution cell over
several past scans to obtain an estimate of the background power
level. In this paper, we apply exponential smoothers to the data
collected in the fast-time. It is assumed that background power
level of the detector stays at the same level for an extensive period
of time, but can have jumps in the power level due to sporadic ac-
tivities of jammers and other sources. For this purpose, we present
a new CFAR method called the Switching IIR CFAR (SIIR CFAR) in
which two IIR filters with different rate parameters are utilized to
estimate the background level.

The paper is organized as follows. Fundamental information
about background estimation using exponential smoothers is given
in Section 2. The proposed detector (SIIR CFAR) is described in Sec-
tion 3. In Section 4, we examine the performance of the suggested
method in different scenarios and finally present the conclusions
in Section 5.

2. Background estimation via exponential smoothing

We assume that the background returns are Gaussian dis-
tributed and undergo square-law detection, possibly after matched
filtering. Therefore the magnitude squared range cells, z[n] in
Fig. 1, are exponentially distributed with the mean value μ:

f z(z) = 1

μ
exp

(
− z

μ

)

The output of the system in Fig. 1 can be written as

y[n] = (1 − γ )

∞∑
m=0

γ mz[n − m] (2)

and the detection threshold is set by
T [n] = αy[n − 1] (3)

where α is the threshold parameter chosen to set the false alarm
rate at a desired level [16, p. 264]. It is desired not to include the
target returns, whose parameters are not known in general, in the
background estimate in order not to bias the system output and to
avoid the target self-cancellation. This means that if a target absent
decision is made, z[n] is used to update the threshold. Otherwise,
the threshold stays constant. The PFA and P D equations for the
described operation are given as, [12],

PFA = 1∏M
m=0 [1 + α(1 − γ )γ m] M → ∞ (4)

P D = 1∏M
m=0 [1 + αD(1 − γ )γ m] M → ∞ (5)

where

αD = α

1 + SNR
(6)

We refer to this method as IIR CFAR in this paper. Even though
Eqs. (4) and (5) are widely used in literature, it should be noted
that they are not exact. In the derivations given in [12], it is as-
sumed that the threshold value is updated at every step. However,
as noted above, the threshold is updated only after a target absent
decision is declared. Therefore the rare event of threshold cross-
ing, due to a significant noise realization, is not accounted for in
PFA calculations (similarly for P D ). In spite of this fact, the rela-
tions provided in [12] are in significant accord with the Monte
Carlo simulations and of great practical value. In this paper, we
also make use of the same assumption and assume that the filters
are always updated. As a side note, we would like to record that
faster converging analytical expressions for P D and PFA of IIR CFAR
systems are given in [17]. These relations also follow the same as-
sumption.

The only parameter in IIR CFAR is the update parameter γ . This
parameter allows a fraction γ of the previous background estimate
to be added to (1 − γ ) times the current cell to form the new
estimate. The value of this parameter can be chosen as, [13],

γ = N − 1

N + 1
(7)

With this choice, the parameter N appearing in (7) attains a
useful interpretation. When the parameter γ is chosen as such, the
steady-state error variance of the exponential smoother is identi-
cal to the error variance of a simple averager with N taps. As a
result, to mimic the behavior of cell averaging CFAR of, for exam-
ple 32 cells, one needs to choose γ = 31/33. It should be noted
that the parameter N can be increased indefinitely without any in-
crease in the memory and computation requirements for the IIR
CFAR systems.

The performance of IIR CFAR in a homogeneous environment
tends to that of the ideal case as γ → 1, [17]. The performance of
the IIR CFAR system in the homogeneous environments has been
studied in the literature quite extensively but the performance
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Fig. 2. The CFAR operation with fast and slow IIR filters around a clutter edge. The clutter edge is encountered at t = 1 second. The ideal threshold for PFA = 10−4 is shown
with the solid line.
under nonhomogeneous conditions has not been examined to a
similar extent. In a homogeneous background, it is known that the
larger the number of cells averaged, the better the background es-
timate and therefore the detection performance. Conversely, in a
nonhomogeneous background, selecting a shorter window provides
the advantage of quickly adapting to the nonhomogeneity, yield-
ing a better CFAR performance. The following section describes a
technique with two exponential smoothers which attains a good
performance in both homogeneous and nonhomogeneous environ-
ments through a switching operation via a pre-defined logic.

3. The proposed method

In a homogeneous environment, it is known that as γ → 1
(N → ∞) the background estimation performance increases. So, for
homogeneous environments it is desirable to use a larger N when-
ever possible. However, for nonhomogeneous environments, it is
desirable to use a smaller N so that the performance degrading ef-
fect of the nonhomogeneity can be avoided by a faster adaptation.
This conflict in the choice of N is illustrated in Fig. 2. In this fig-
ure, the data is zero-mean Gaussian distributed and its variance
changes at the first second from 0 dB to 10 dB.

In Fig. 2, the threshold estimates of IIR CFAR systems with dif-
ferent rate parameters are shown around a clutter edge. Note that
the two IIR CFAR systems shown in Fig. 2 have the same PFA . Here
the ‘fast filter’ produces the threshold of T1[n] and the ‘slow filter’
produces the threshold of T2[n] as described below:

T1[n] = α1 y1[n − 1]
T2[n] = α2 y2[n − 1] (8)

and

y1[n] = γ1 y1[n − 1] + (1 − γ1)z[n]
y2[n] = γ2 y2[n − 1] + (1 − γ2)z[n] (9)

The update parameters γ1 and γ2 are given as

γ1 = N1 − 1

N1 + 1
γ2 = N2 − 1

N2 + 1
(10)

In Fig. 2, N2 is equal to 256, while N1 is 32. This means that T2,
in effect, averages more samples and has a larger time constant,
hence the name ‘slow filter’ is attributed to this filter. T1 has a
smaller time constant and can adapt to the environment faster,
hence the name ‘fast filter’ is attributed.1 The aim is to use the
slow filter in the homogeneous segments and switch to the fast
filter if the statistics of the environment has an abrupt change.

To decide if the environment is homogeneous or not, we adopt
the absolute value of the difference between the two filter out-
puts as the decision logic. In a homogeneous environment, it is
expected that both y1 and y2 produce outputs in close vicinity of
each other. However, an abrupt change in the parameters of the
environment results in a rapid change of the fast filter output in
comparison to the slow filter. An unexpected deviation in the dif-
ference of outputs can be interpreted as an indicator of an abrupt
change in the background parameters. If such a change is detected,
the system switches to the fast filter and uses the fast filter to es-
timate the background level. This algorithm is called as Switching
IIR CFAR (SIIR CFAR) in this paper.

The event of switching will be based on |y1 − y2| as shown
in (11)

|y1 − y2|
use fast filter

≷
use slow filter

T S (11)

where T S is the switching threshold. Similar to the clean sample
rejection rate presented in [18] we suggest False Switching Proba-
bility (PFS) for Switching IIR CFAR systems:

PFS = P
{|y1 − y2| > T S | homogeneous environment

}
(12)

The probability of ‘false switching’ is defined as the probability
that a switching decision is made when the environment is in
fact homogeneous, that is in the absence of abrupt changes. False
switching means that the fast filter is chosen where the slow fil-
ter should have been preferred for threshold calculation. Obviously,
when PFS is increased, more switching decisions commence. This
means that, for larger PFS , the fast filter is used more frequently
and the performance of SIIR CFAR algorithm is expected to be
closer to that of IIR CFAR with the fast filter. Similarly, for small
PFS values, the performance is expected to be similar to that of
the slow filter.

An exact derivation for T S requires an inverse cumulative dis-
tribution function (cdf) of |y1 − y2|. To the best of our knowledge,

1 Throughout the paper, the filter #1 denotes the fast filter and the filter #2 de-
notes the slow filter, i.e. we assume that N2 > N1.
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an analytical expression for the distribution of y1 or y2 (the expo-
nential smoother outputs) is not available in the literature [13,15].
The distribution of |y1 − y2| is even more difficult (due to corre-
lation between y1 and y2) and to the best of our knowledge, is
not also available in closed form. In the literature, it is common
practice to assume y1 and y2 to be Gaussian distributed for large
N1 and N2 as mentioned in [13]. In here, we proceed similarly but
improve the conventional Gaussian approximation by providing a
further match using the next higher order moments. To this aim,
we follow the error correction method given in [19, p. 217]:

fx(x) ≈ 1

σ
√

2π
e−x2/2σ 2

[
1 + m3

6σ 3

(
x3

σ 3
− 3x

σ

)]
(13)

where x ≡ y1 − y2 and σ 2 = var{x} = m2, the second moment
of x. To make this error correction, we need the third moment of
y1 − y2, namely m3 = E{(y1 − y2)

3}. The moments for n � 3 can
be calculated as follows:

E
{
(y1 − y2)

n}
=

n∑
k=0

(−1)k
(

n

k

)
(1 − γ1)

n−k(1 − γ2)
k

1 − γ n−k
1 γ k

2

(
n!μn

n∑
j=0

(−1) j

j!

)

(14)

In terms of N1 and N2 (not γ1 and γ2) the first three moments of
y1 − y2 are

m1 = 0 (15)

m2 = (N2 − N1)
2

N1N2(N1 + N2)
μ2 (16)

m3 = 48(N1 + N2)(N1N2 − 1)(N2 − N1)
3

(3N2
1 + 1)(3N2

2 + 1)(2N1N2 + N2
2 + 1)(2N1N2 + N2

1 + 1)
μ3

(17)

We note that adding more terms to the expression in (13) makes
the approximation more accurate but the calculation of higher or-
der moments becomes excessively tedious.

Now, the problem of calculating T S has been reduced to deter-
mining T S from PFS = P {|x| > T S }. Using the approximate pdf in
(13) the threshold T S can be calculated by numerically solving the
following equation

Q (T S/
√

m2 ) + m3√
8πm5

2

exp
(−T 2

S /2m2
)( T 2

S − m2

3

)
= PFS

2

(18)

where Q is the Gaussian Q function defined as

Q (x) = 1√
2π

∞∫
x

exp

(−u2

2

)
du (19)

The steps of derivation for (18) is outlined in Appendix A. To
check the fidelity of the suggested approximation, we make the
following Monte Carlo simulations. Note that the only parame-
ter required for calculation of T S is μ (the mean of the magni-
tude squared observations) which is not available to the system.
The goal of the suggested CFAR system is to estimate and track
the background noise variance, μ. For comparison purposes, we
present three different ways of calculating T S :

1. y1 − y2 is assumed to be a normal random variable. For
a desired PFS , the switching threshold is found from T S =√

m2 Q −1(PFS/2). Here μ is assumed to be known. This case
is called ‘Gaussian approximation’.
Fig. 3. PFS simulations for N1 = 32 and N2 = 256.

2. For a desired PFS , the threshold T S is found from (18) and μ
is assumed to be known. This case is called ‘Corrected IIR’.

3. For a desired PFS , the threshold T S is found from (18) and μ
is assumed to be not known. Since y1 and y2 are estimators
of noise power, it is assumed that y2 = μ. Here the slow filter
is preferred because of its smaller variance in homogeneous
environments. This case is called ‘Corrected IIR Spot’ since μ
is estimated on the spot at each step. It should be noted that
this is the case to be used in practice.

The simulation results are seen in Fig. 3. In this figure, the ideal
operation, which is the equality of desired and achieved probabil-
ities for false switching, is shown with the straight line of slope 1
and passing through the origin.

Fig. 3 shows that the correction terms given in (13) yield a sig-
nificant improvement over Gaussian approximation for small false
switching probabilities. This means that the switching threshold
T S for (12) can be set using (18) for a wider range of PFS values
with the correction.

We would like to note that the numerical solution of (18) for
the threshold is a computationally difficult task. It is possible to
rewrite (18) in the following form,

Q

(√
T 2

S

m2

)
+ cN1,N2 exp

(
−1

2

T 2
S

m2

)(
T 2

S

m2
− 1

)
= PFS

2
(20)

where

cN1,N2 = m3

3
√

8πm3
2

(21)

is a constant that depends only on N1 and N2 not on μ. We see
that (20) is a function of T S/

√
m2 or equivalently T S/μ. To aid

the implementation of the threshold selection process, we define
the normalized threshold, λ as λ = T S/μ. With this definition, the
threshold T S is the normalized threshold times the background
noise variance. Fig. 4 shows the variation of λ for different PFS
and (N1, N2) values. A system designer can use this graph to set
the normalized threshold for a desired PFS . In practice, a look-up
table for a specific (N1, N2) pair should be prepared and utilized
in real-time operation.

The proposed SIIR CFAR algorithm is summarized in Algo-
rithm 1. Here y1[n] is the fast filter and y2[n] is the slow filter.
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Fig. 4. Normalized threshold λ for different values of (N1, N2).
Algorithm 1 The SIIR CFAR Algorithm
Initialize y1[0], y2[0], T [0]
For a desired (N1, N2) compute γ1 and γ2 from (7)
For a desired PFA compute α1 and α2 from (4)
For a desired PFS and (N1, N2) lookup λ (or use Fig. 4)
for all n > 0 do

if z[n] < T [n − 1](target is absent) then
y1[n] = γ1 y1[n − 1] + (1 − γ1)z[n]
y2[n] = γ2 y2[n − 1] + (1 − γ2)z[n]

else
y1[n] = y1[n − 1]
y2[n] = y2[n − 1]

end if
if |y1[n] − y2[n]| > λy2[n] then

T [n] = α1 y1[n]
else

T [n] = α2 y2[n]
end if

Detection decision is based on z[n]
H1

≷
H0

T [n − 1]
end for

(i.e. N1 < N2). z[n] is the magnitude squared input and T [n] is the
threshold at time n.

The block diagram of the switching system is given in Fig. 5.
In this figure, both filters are always running and the output is
switched between two of them depending on the described logic.

The comparator block makes the comparison of |y1[n − 1] −
y2[n − 1]| > λy2[n − 1]. The output Select (S) is 1 if this compar-
ison is true and 0 if it is false. T [n] is switched between the two
filter outputs according to S . This concludes the construction of
the Switching IIR CFAR algorithm.

We conclude this section with a figure to illustrate the oper-
ation of the SIIR CFAR system. Similar to Fig. 2, Fig. 6 shows the
operation of the SIIR CFAR around a clutter edge. As seen from
this figure, the proposed system switches to the fast filter just
after the clutter edge avoiding many false alarms that would be
encountered if slow filter was utilized. Fig. 6 is given for illus-
tration purposes and it shows the operation of the system for a
single realization. In Section 4, the results of Monte Carlo runs are
given to examine the performance of the proposed method in de-
tail.

4. Numerical results

We examine the probability of false alarm and the probability
of detection performance of the SIIR CFAR in this section. Our goals
are to illustrate the loss in performance due to false switching in
homogeneous environments and to examine the performance (the
number of false alarms) just after a clutter edge. We note that the
performance loss incurred for the homogeneous case is the cost of
performance improvement in the nonhomogeneous case. Our goal
is to illustrate this trade-off and examine the effect of different
parameters in this trade-off.

4.1. Homogeneous environment

We follow the literature and use a Swerling 1 fluctuating target
for the probability-of-detection comparisons. The pdf of z[n] in this
case is

f z(z) = 1

μ
exp

(−z

μ

)

where

μ =
{

β2, under H0

β2(1 + SNR), under H1

where β2 is the average background noise power which can also
be assumed to be equal to 1 with no loss of generalization.

Fig. 7 compares the performance of SIIR CFAR with the optimal
detector utilizing known μ. It is observed that the performance of
the Switching IIR system is very close to the optimal detector un-
der homogeneous conditions. In this comparison, the slow filter is
denoted by IIR(128), an IIR filter tuned to operate so as to average
128 cells, and the fast filter is denoted by IIR(32).

The performance of the switching system can be justified
through the following argument: Let the P D of slow IIR CFAR be
denoted by P D,slow and that of fast IIR CFAR by P D,fast . In a ho-
mogeneous environment, with a probability of PFS the fast filter is
selected and with a probability of 1− PFS the slow filter is selected
to form the threshold estimate. So, the combined P D is

P D,SIIR = P D,fast PFS + P D,slow(1 − PFS) ≈ P D,slow for small PFS

(22)

This shows that the combined detection probability is a weighted
average of two detection probabilities. Hence the detection proba-
bility for the switching system lies in between the two probability
curves and it is indeed closer to the curve having the higher de-
tection probability. It has to be noted that in this figure, the false
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Fig. 5. Block diagram of the proposed system.

Fig. 6. The operation of switching IIR CFAR around the clutter edge. The clutter edge is encountered at t = 2 seconds. The ideal threshold for PFA = 10−4 is shown with solid
line.

Fig. 7. P D simulations for N1 = 32, N2 = 128, PFA = 10−4, PFS = 10−1 under homogeneous conditions.
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Fig. 8. P D simulations for N1 = 32, N2 = 128, PFA = 10−4, PFS = 10−1 under homogeneous conditions vs. CA CFAR.
switching probability has been selected as 0.1 which is a very
modest number. As expected, the performance improves when
false switching probability is reduced. Simulation results for other
parameter values are available in [20].

Next, we compare the SIIR CFAR algorithm with the CA CFAR
in homogeneous environment. Fig. 8 shows that the performance
of SIIR CFAR is identical to that of CA CFAR in the homogeneous
environments. However the computational load and memory re-
quirement of SIIR CFAR is much less than that of CA CFAR.

The conclusion of this section is that SIIR CFAR systems can
produce an almost identical performance to cell averaging CFAR in
homogeneous environments and there is almost no loss of per-
formance due to switching if the false switching probability is
selected low enough.

4.2. Nonhomogeneous environments

We investigate the performance of SIIR CFAR when a clutter
edge is present in the reference window. Since IIR filters are causal,
the threshold is estimated using the samples in the history; i.e.
using the lagging window. By the nature of causal IIR operation, we
expect a sudden jump in the false alarm probability just after the
clutter edge. The false alarm probability then gradually decreases
to the level set by the designer as the process moves into higher
variance clutter region.

Fig. 9 shows the PFA performance of IIR(32), IIR(128) and
SIIR(32/128) algorithms. As expected, there is a sudden increase
in PFA at the clutter transition for all systems.

The merit factor for the presented methods can be the required
time after the clutter edge to achieve the desired false alarm prob-
ability. IIR(32) has better performance than IIR(128) in this sense
because its false alarm rate returns to its steady state value faster
than the other. This is because IIR(32) is a faster filter which aver-
ages less samples than IIR(128).

The switching operation combines the PFA performance of the
slow and fast IIR filters. The SIIR algorithm immediately selects the
fast filter which is IIR(32), as soon as the clutter edge is crossed.
After a number of range cells beyond the edge, the magnitude of
the difference between the fast and slow filters becomes small, and
IIR(128) (the slow filter) is reselected.

The effect of the design parameter PFS can also be seen in
Fig. 9. For smaller PFS , the slow filter is selected more frequently
therefore the overall false alarm performance is closer to that of
the slow filter. The counter statement holds for larger PFS .

Fig. 10 shows the clutter edge PFA performance of CA CFAR vs.
SIIR CFAR. It is observed that both SIIR curves (32/64 and 32/128)
display a fast recovery towards low PFA values close to that of
CA(32) after the clutter edge. On the other hand, it takes somewhat
longer to settle at the steady state level at lower PFA values. It can
also be stated that SIIR CFAR(32/64) has a performance between
CA(32) and CA(64). Similarly, SIIR CFAR(32/128) has a performance
lying in between CA(32) and CA(128).

The designer of a typical CA-CFAR system sets the parameter N
such that N is sufficiently good at both homogeneous and nonho-
mogeneous environments (the clutter edge). If N is selected as 32,
the performance is good just after the clutter edge (as seen from
Fig. 10); but this choice leads to a poorer performance in the ho-
mogeneous medium. If N is selected as 64, the performance is
poor after the clutter edge (as seen from Fig. 10), but the perfor-
mance is better at the homogeneous medium due to the utilization
of larger number of cells in background estimation. The designer of
CA-CFAR system makes a trade-off between two cases and sets the
value of N .

The aim of the suggested method is to capture the best char-
acteristics of two CFAR techniques through switching operation.
Hence the trade-off point is established through switching.

It should be noted that Fig. 10 contains the comparison of IIR
systems (SIIR CFAR) and FIR systems (CA(N) CFAR). Due to the
nature of IIR systems, a step-like discontinuity is reflected as an
exponential decay in this figure. On the other hand, FIR systems
forget all the cells but the latest N cells, that is CA(32) uses only
the latest 32 cells for background estimation. This is the reason
that CA(32) and CA(64) has an abrupt reduction in the false alarms
at the 32nd and 64th cells after the clutter edge.

Fig. 11 shows the clutter edge PFA performance of SIIR CFAR
vs. OS CFAR. OS(16/32) and OS(24/32) curves illustrate the perfor-
mance when the 16th and 24th largest sample in the reference
window is taken, respectively, as the background estimate, [22]. As
stated in [22], the performance of OS CFAR for homogeneous envi-
ronment is poorer than the one of CA CFAR. Due to the equivalence
of SIIR CFAR with CA CFAR, the proposed system is expected to
perform better than OS CFAR under homogeneous environments.
For nonhomogeneous environment, it is seen from Fig. 11 that SIIR
CFAR has a similar but inferior performance when compared with
the OS CFAR. It should be remembered that OS CFAR is a high
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Fig. 9. PFA simulations under clutter edge for N1 = 32, N2 = 128, PFA = 10−4, CNR = 10 dB, PFS = 10−4 and PFS = 10−1.

Fig. 10. PFA simulations under clutter edge for SIIR CFAR vs. CA CFAR algorithms.
computation method which cannot be put in the same class with
the proposed system from the computational perspective. It should
be remembered that our goal in this paper is to present a switch-
ing mechanism which enables the successful utilization of simple
CFAR techniques. As seen from the block diagram of the proposed
scheme given in Fig. 5, the additional computational burden due
to proposed switching mechanism is miniscule.

It should also be noted that OS CFAR is particularly valuable
for the multiple target scenarios and for the environments with
clutter discretes; but not for the clutter edge problem. Given the
results of Fig. 11, we believe that an implementation of OS CFAR
does have sufficient return to compensate its computational load
and therefore is not very rewarding.

5. Conclusions

Conventional CFAR methods use a fixed number of cells to set
the threshold and compare the cell under test against the cal-
culated threshold. This can lead to significant memory and com-
putational requirements especially for advanced CFAR systems. In
this paper, a novel CFAR processing method using exponential
smoothers is presented. In contrast to other methods, the expo-
nential smoothers require much less resources and they are es-
pecially suitable for embedded implementations. Proposed method
enables the utilization of these computationally attractive struc-
tures in nonhomogeneous environments.

A CFAR method based on the utilization of two exponential
smoothers with different time-constants is studied. The slow filter
is shown to have a better estimation performance in the homoge-
neous environments, while the fast filter is shown to be superior
during the clutter edge transition. A switching mechanism among
fast and slow filters is described and the performance of the sys-
tem with switching, Switching IIR CFAR, is examined.

The performance results show that the Switching IIR CFAR sys-
tem has negligible performance loss due to false switching in the
homogeneous environment. The system has no loss of performance
in the multiple target scenarios. The system has some PFA inflation
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Fig. 11. PFA simulations under clutter edge for SIIR CFAR vs. OS CFAR algorithms.
just after the clutter edge, but it can be controlled by adjusting the
parameters (N1, N2 and PFS) of the proposed system. The proposed
method provides a mechanism with a few parameters to establish
a trade-off between the conflicting requirements of homogeneous
and nonhomogeneous environments.

Appendix A. Derivation of Eq. (18)

Here we outline the derivation of Eq. (18). The false switching
event is defined as follows:

PFS = P
{|x| > T S

} = 2P {x > T S} = 2

∞∫
T S

fx(x)dx (A.1)

where x = y1 − y2. In the definition above, P {x > T S } and P {x <

−T S } are taken as equal to each other. It should be noted that x
is zero mean random variable with other moments given in (16)
and (17). Since the third moment is not equal to zero, we cannot
immediately say that P {x > T S } = P {x < −T S }. But since N2 > N1;
this leads the random variable x to skew towards positive x-axis.
Therefore taking P {x > T S } = P {x < −T S } is a pessimistic assump-
tion which can lead to more false alarms than designed. Fig. 3
indeed confirms this.

When the approximation of fx(x) given in (13) is substituted in
(A.1) we get,
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−
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2σ2
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(A.2)

When the first integral on the right side of (A.2) is expressed in
terms of Q (·) function and the second and third integrals are eval-
uated using [21, p. 108], we get the relation presented in (18).
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