
1

Changing Signal Scale or Sampling Rate “Gently”
By Fractional Delay Filtering

Çag̃atay Candan, Senior Member, IEEE
Department of Electrical and Electronics Engineering,

METU, Ankara, Turkey.
ccandan@metu.edu.tr

Abstract—An efficient method for signal scaling and sampling
rate conversion is presented. The method is particularly suitable
for the sampling rate conversion ratios, or equivalently signal
scaling ratios, close to unity, such as 24/25. Within the scope
of the present work, the rate changes around unity is called
as “gentle” changes. The implementation of gentle rate changes
through conventional techniques (cascade application of upsam-
pling and downsampling) is not feasible in many applications. An
efficiently implementable solution, typically requiring less than 5
multiplications per output sample, is described as a remedy for
such applications.

Index Terms—Signal Scaling, Sampling Rate Change, Frac-
tional Delay

I. INTRODUCTION

A time-varying filtering scheme for signal scaling, which is
also applicable to the sampling rate conversion, is presented.
The main goal is to produce the samples of the scaled signal,
xβ [n] = x(βt)|t=nT , by digitally processing the samples of
x(t), that is x[n] = x(t)|t=nT . The problem of producing
xβ [n] from x[n] can also be interpreted as the change of
sampling rate from T to βT . Our main interest is the case
of β ≈ 1, such as β = 24/25, which is called as a “gentle”
change in the context of the present study. If we follow the
conventional techniques, such gentle changes require quite
demanding implementations. For example, the rate change of
24/25 requires upsampling by 25 units followed by downsam-
pling by 24 units. Our goal is to describe a computationally
attractive scheme to realize gentle rate changes.

The signal scaling problem with β ≈ 1 may arise due to the
deviation of the clocks running the analog-to-digital-converters
(A/D) or digital-to-analog-converters (D/A). In the processing
chain, the master clock of the converters may inadvertently
“run faster” than the nominal speed. This may lead to a
shorter than desired time period between samples. Specifically,
if the oscillator has a frequency drift of 1000 ppm (parts per
million), the actual sampling period can lie in the interval of[

999
1000T,

1001
1000T

]
where T is the nominal sampling period. The

textbook solution to correct the sampling rate deviation, which
is the cascade application of upsampling and downsampling,
is not a feasible approach for such conversion ratios.

Another application area requiring gentle corrections in the
sampling rate is the compensation of the wideband Doppler
effect in sonar systems. As noted in [1, p.52], the time
dilation/compression on the order of 1±0.001 can deteriorate
the processing of the received echo. A proper signal design for
the reduction of this undesired effect is suggested in [1]. Here,

we suggest an alternative approach that scales the received
sonar echo so that the dilation/compression due to the Doppler
effect can be efficiently compensated.

The principle of the suggested method has been first given
in the context of audio format conversion from CD (sampled
at 44.1 kHz) to DAT (sampled at 48 kHz), [2]. Some earlier
studies also study the application of fractional delay filters
for the sampling rate conversion, [3], [4]. Most recently, Blok
has described several fractional delay filtering schemes for the
solution of the same problem, [5]. The main contribution of the
present work can be stated as the recognition of the importance
of fractional delay based systems for a gentle change in the
signal scale and the description of a highly efficient discrete
Newton series based implementation for the realization of
fractional delay filters, [6].

II. PRELIMINARIES

The signal x(t) and its scaled version xβ(t) = x(βt)
are assumed to be sampled with the sampling period T , i.e.
x[n] = x(t)|t=nT and xβ [n] = x(βt)|t=nT . Note that the
signal xβ [n] can also be considered as the samples of x(t)
with the sampling period βT , that is xβ [n] = x(βt)|t=nT =
x(t)|t=n(βT). Hence, the process of generating xβ [n] from
x[n] can be interpreted as either the change of sampling rate
from T to βT or the change of signal scale from 1 to β.

For some applications mentioned in the introduction, the
desired sampling rate change (or the scale factor) can be
close to unity, β ≈ 1. The presented scheme is specifically
developed for such applications. The working principle of the
scheme can be described by writing β = 1−α, with |α| ≪ 1,
and then re-expressing the scaling relation as follows:

xβ(t) = x(βt) = x(t− αt). (1)

It is possible to interpret αt in (1) as the amount of delay
(or advance, if α < 0) of signal x(t) at time t. Here, delay
is an increasing function of time and if it can be properly
realized for all t, the scaled signal can be generated. In terms
of sampled data, the delay of αt seconds corresponds to αt/T
samples of delay. The delay value is typically not integer
valued and fractional delay filters is required for its realization.

Figure 1 illustrates the approach for α = 1/3. The presented
value for α corresponds to the scale change of β = 1− α =
2/3 or the sampling rate change of 1/β = 3/2. From Figure 1,
it can be noted that the n’th output sample (y[n]) has a time
delay of n× 1/3 samples from the n’th input sample (x[n]).

2

−0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

1

2

3

4

5

6

x[0]

x[1]

x[2]

x[3]

x[4]

y[0]

y[1]

y[2]

y[3]

y[4]

α = 1 / 3

x[n] : input data
y[n] : output (resampled)
 Linear interpolation

1/3

2/3
3/3

4/3

Fig. 1. Resampling for the sampling rate change of 1/β = 1/(1 − α) or
the signal scaling of β = 1− α for α = 1/3.

The dotted line in Figure 1 is the result of linear inter-
polation. By evaluating, the linear interpolation result at an
increasing delay of D[n] = αn samples from the n’th input
sample, the scaled output can be generated. Even though, this
interpretation (output being the fractionally delayed version
of input) is valid; we prefer to interpret the output as the
resampled version of input. Our goal is to generalize the
resampling operation with linear interpolator as illustrated
in Figure 1 to arbitrary order polynomial interpolation and
present an efficient mechanism for its realization. In this
section, a fairly detailed description of the linear interpolation
case is provided to assist the discussion of the general case.

It can be noted from Figure 1 that each output sample
is generated by processing two closest samples around the
output sample. For example, y[1] is generated from x[0] and
x[1]; upon the arrival of x[2], the next output sample y[2]
is generated from x[1] and x[2] and so on. The illustrated
system is to increase the sampling rate change by 3/2; hence,
the system should produce more than one output sample per
input sample on the average. The increase in the rate can be
noted by studying the output sample y[4]. It should be noted
that the required delay for y[4] is 4/3 samples, exceeding the
unit delay for the first time. The sample y[4] is generated from
the input samples of x[2] and x[3] which are two neighboring
input samples. It should also be noted that the same set of
input samples (x[2] and x[3]) is also used for the generation
of y[3]. Hence, the set of samples x[2] and x[3] is utilized
twice for the generation of two output samples and this leads
to the increase in the sampling rate. It should also be noted
that the case described for y[4] occurs repeatedly whenever
the output sample has a delay exceeding a full integer value.

Figure 2 shows a possible implementation for the realization
of the fractional delays depicted in Figure 1. The delay of
D[n] = αn (α = 1/3) and the multiplier w[n], appearing in
the filtering diagram in Figure 2, are listed in Table I. The table
is presented to emphasize the time-varying and asynchronous
nature of the scheme. It should be noted that when D[n]
exceeds a full integer delay; the samples in the buffers, which
are shown with dark squares, are not shifted; hence the same

+ +

x[n]

y[n]

z-1

w[n]1-w[n]

+ +

x[n]

y[n]

z-1

w[n]1-w[n]

Fig. 2. Filtering scheme for the implementation of the resampling process
shown in Figure 1. The multiplier values are given in Table I.

TABLE I
IMPLEMENTATION OF THE SCHEME SHOWN IN FIGURE 1

n D[n] w[n] buffer contents
0 0 0 x[0], x[-1]=0
1 1/3 1/3 x[1], x[0] (updated)
2 2/3 2/3 x[2], x[1] (updated)
3 3/3 3/3 x[3], x[2] (updated)
4 4/3 1/3 x[3], x[2] (not updated)
5 5/3 2/3 x[4], x[3] (updated)
6 6/3 3/3 x[4], x[3] (updated)
7 7/3 1/3 x[4], x[3] (not updated)
...

...
...

...

buffer content is utilized twice to produce two output samples.
This occurs at n = 4 and n = 7, where D[n] exceeds a full
integer delay, as noted in Table I.

In this section, the case of upsampling (α > 0) is presented
through an example having α = 1/3. For α < 0, the system
becomes to a downsampling system. For the downsampling
case, in analogy with the upsampling case, some buffer
contents are discarded and are not used to produce an output.
This leads to a reduction in the rate. We do not present further
details of this case; but a detailed MATLAB implementation
of the proposed scheme, efficiently implementing N th order
polynomial interpolation and handling both upsampling and
downsampling cases, is given in [7].

III. PROPOSED IMPLEMENTATION

The proposed scheme generalizes the scheme described
in the earlier section to higher order interpolators. Figure 3
illustrates the suggested scheme for α = 1/3. As before, the
first two samples are generated through the linear interpolator
(shown with dotted lines) having the delays 0 and 1/3,
respectively. As shown in Figure 3, the next output sample,
y[2], is generated by combining the closest two input samples
on each side of y[2], instead of using one sample on each side
as in the linear interpolator. The output sample is generated
by finding the unique 3rd order polynomial passing through
4 input points in the neighborhood of y[2]. The method of
interpolation by fitting an N th degree polynomial to N + 1
data inputs is called as the Lagrange interpolation, [8, p.81].

The Lagrange interpolation can be implemented in various
ways. One of most efficient implementation is through the
Newton series expansion, [6]. The Newton series implementa-
tion has the complexity of O(N) multiplications and additions
per output sample for the N th degree interpolation.

The Newton series is the discrete time equivalent of Taylor
series. The backward difference operator ∆, ∆{f [n]} =
f [n] − f [n − 1], in analogy with the derivative operator, and
the M th degree factorial polynomial

3

−1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2

3

4

5

6

7

8

9

y[2]

y[1]

y[0]

x[0]

x[1]

x[2]

x[3]
x[n] : input data
y[n] : output (resampled)
 Cubic interpolation
Linear Interpolation

D

Fig. 3. The resampling process for the proposed scheme

1 - z-1 1 - z-1 1 - z-1

+ + ++

x[n]

y[n]

1 w1[n] w2[n] wN-2[n] wN-1[n]

Fig. 4. Proposed structure for the sampling rate change / signal scaling.

x[M] =

{
1, M = 0
x(x+ 1) . . . (x+M − 1), M ≥ 1

, (2)

in analogy with xM , are defined to introduce the New-
ton series. The presented definitions lead to the fact that
∆{x[M]} = Mx[M−1], in analogy with d

dxx
M = MxM−1.

Given these, Newton series can be defined as follows, [6]:

x̃(k −D) =
N−1∑
i=0

∆i{x[k]} (−D)[i]

i!
(3)

It can be noted from (3) that x̃(k −D) = x[k −D] for D =
{0, 1, . . . , N − 1}. This fact can be most easily verified by
applying ∆ operator on both sides of (3) and evaluating the
result at D = 0, as described in [6]. It should be noted that the
polynomial x̃(k−D) is the Lagrange interpolation polynomial;
since it passes through N + 1 consecutive data samples of
{x[k −N], . . . , x[k]}.

The main advantage of Newton series formulation is the
ease of its digital implementation. Figure 4 shows the proposed
Newton Series based implementation which exactly follows
the analytical relation given in (3). The implementation shown
has N multipliers and N first order differencing blocks, shown
with 1− z−1. The value of the multiplier at the output of ith
differencing block at the time instant of n is denoted by wi[n].
The time-varying nature of the filtering scheme is evident from
the implementation.

The weights wi[n] can be specified as follows. As before,
D[n] represents the value of the desired delay at the sample n.
The proposed N point (N − 1’th order) Lagrange interpolator
scheme uses the nearest N/2 input samples on each side of
the output sample for the interpolation. The delay at the time
instant n can be written as follows:

D[n] =
N − 2

2
+ αn, N : even (4)

The term N−2
2 in (4) corresponds to the bulk delay due to

the usage of N/2 input points on the right side of the output
sample. (The bulk delay is required for the causality of the
implementation.) The term of αn in (4) corresponds to the
time varying delay. When N = 2, the equation (4) reduces
to the definition given in the previous section for the linear
interpolator.

Following the formulation of (3), the filter coefficients wi[n]
i = {0, . . . , N − 1} can be explicitly written as follows:

di[n] =
1

i!

(
−
(
N − 2

2
+ rem(αn, 1)

))[i]

(5)

The term of (N−2)/2+ rem(αn, 1) corresponds to the effec-
tive fractional delay. The function rem(·, 1) represents the non-
integer (fractional) part of the argument. More specifically,
rem(·, A) corresponds to the remainder operation when the
argument is divided by A + ϵ for an arbitrary small positive
ϵ, i.e. the range of rem(·, A) is [0, A].

The appearance of rem(·, 1) in (5) is due to the time-
variation of the delay. When the delay D[n] exceeds a full
integer value, the buffer contents are not updated. By choosing
not to update the buffer contents for such instances, the
additional unit sample increase in the delay is integrated
into the system. The remaining part of the delay after the
integration of its integral part becomes rem(αn, 1).

The described operation can be most easily seen from
Table I. At the sample of n = 4, the desired delay is 4/3
samples. To implement this delay, the buffer contents for n = 3
is used to the produce the 4th output sample and the required
fractional delay becomes 4/3−1 = 1/3 (which is identical to
the multiplier w[n]) for the linear interpolation scheme (also
see Figure 1).

The present discussion is focused on the case of upsampling
(α > 0) with even number of input points (N : even) for the
interpolation. Both restrictions can be easily lifted as follows:

Case of Odd N: The description given above assumes the
number of points utilized in the Lagrange interpolator is even.
The approach and the filtering scheme given in Figure 4 can
be used as it is also for the odd values of N by adopting
D[n] = N−3

2 + αn instead of (4). This choice corresponds to
usage of N−1

2 samples on the right side of output sample and
N+1
2 samples on the left side of the output sample. (There can

be other alternatives.) The bulk delay in (5) for the calculation
of multiplication coefficients becomes N−3

2 . This applies to
both upsampling and downsampling cases.

Case of Downsampling (α < 0): The downsampling case
follows quite easily from the given discussion. One important
change is the change in the argument of rem(·, 1) appearing
in (5) from αn to (1 + α)n. For further details, readers are
invited to examine the detailed MATLAB code given for both
downsampling and upsampling cases, [7].

IV. NUMERICAL RESULTS

In all three sets of experiments presented in this section,
the input is taken as x[n] = cos(ωn). The output produced by
the scheme is compared with the desired output of xβ [n] =

4

cos(βωn) in the root mean square (RMS) sense for various
values of signal frequency (ω) and the scaling factor (β).

Figure 5 shows the output produced by the scheme for
ω = π/4 and β = 4/5; stated differently, the input
x[n] = cos(π/4n) is resampled such that the output is
xβ [n] = cos(π/5n). Figure 5 shows the scheme output for
linear (N = 2) and cubic interpolation (N = 4). It can be
noted that the case of N = 4 is almost identical to the true
output for the given ω and β values.

0 1 2 3 4 5 6 7 8 9 10
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Scaling x[n] = cos(π/4 n) by β = 4/5

n

Input
Desired Output
Scheme Output (N=2)
Scheme Output (N=4)

Fig. 5. Output for the scaling of cos(π/4n) by β = 4/5.

Figure 6 shows the RMS error when the input cos(π/4n)
is scaled by β ∈ [0.5, 1.5] using different order Lagrange
interpolators. Given range for β corresponds to the range
of sampling rate change from 2/3 (downsampling) to 2
(upsampling). This range is beyond the main motivation for the
presented scheme; but we can note that the scheme presents
a good performance for a fairly large range of β values for
the frequency of ω = π/4. It should be noted that the case
of β = 1 corresponds to the case of no sampling rate change
for which no error is incurred. In addition, the RMS value for
cos(π/4βn) (desired output), which is 1/

√
2, is also indicated

as signal RMS in Figure 6 for comparison purposes.

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
10

−4

10
−3

10
−2

10
−1

10
0

RMS error in the scaling of cos(π/4 n) by β
(change of sampling rate by 1/β)

β

S
ig

na
l R

M
S

 a
nd

 R
M

S
 E

rr
or

Signal RMS
N = 2
N = 3
N = 4
N = 5
N = 6

Fig. 6. RMS error for the scaling of cos(π/4n) by β.

Figure 7 shows the error for β = 0.9 when the frequency
of the input cos(ωn) is varied. As ω → π, the polynomial
interpolation ceases to be useful; since rapid oscillations can
not be faithfully approximated by a small degree polynomial.
It can be noted from Figure 7 that the presented scheme works
well for |ω| ≤ π/2. Hence, it is possible to conclude that the
suggested method can be applied for a wide range of β, not
only for β ≈ 1, if the input is at least two times oversampled.
If this condition is not satisfied, the designer implementing a
gentle rate change may choose to upsample the input by 2 and
then apply the suggested method.

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

RMS error in the scaling of cos(ωn) by β = 0.9
(change of sampling rate by 1/β)

normalized frequency (ω / 2π)

R
M

S

Signal RMS
N = 2
N = 3
N = 4
N = 5
N = 6

Fig. 7. RMS error for the scaling of cos(ωn) by β = 0.9.

V. CONCLUSIONS

A scheme to digitally scale the sampled input or to change
its sampling rate is suggested. The scheme requires very few
operations (N multiplications for N th order interpolation) per
output sample and yields a satisfactory performance for a wide
range of input frequency and scaling factor. We believe that
the main application of the presented scheme would be in the
change of sampling rate around unity, such as β = 24/25, for
which the conventional technique of upsampling followed by
downsampling is not a feasible approach.

REFERENCES

[1] R. Istepanian and M. Stojanovic, Underwater Acoustic Digital Signal
Processing and Communication Systems. USA: Springer Press, 2002.

[2] K. Rajamani, Y.-S. Lai, and C. Furrow, “An efficient algorithm for sample
rate conversion from CD to DAT,” IEEE Signal Processing Lett., vol. 7,
no. 10, pp. 288–290, Oct. 2000.

[3] A. Tarczynski, W. Kozinski, and G. Cain, “Sampling rate conversion using
fractional-sample delay,” in Proc. IEEE Int. Conf. Acoust. Speech Signal
Process., Apr. 1994, pp. 285–288.

[4] F. Harris, “Performance and design of Farrow filter used for arbitrary
resampling,” in 13th Int. Conf. on Digital Signal Processing Proceedings,,
July 1997, pp. 595–599.

[5] M. Blok, “Fractional Delay Filter Design for Sample Rate Conversion,”
in Proc. Federated Conference on Computer Science and Information
Systems, Sept. 2012, pp. 701–706.

[6] C. Candan, “An Efficient Filtering Structure for Lagrange Interpolation,”
IEEE Signal Processing Lett., vol. 14, no. 1, pp. 17–19, Jan. 2007.

[7] ——. (2013) Changing Signal Scale or Sampling Rate “Gently”
By Fractional Delay Filtering, MATLAB Code. [Online]. Available:
http://www.eee.metu.edu.tr/∼ccandan/pub.htm

[8] F. B. Hildebrand, Introduction to numerical analysis. New York:
McGraw-Hill, 1974.

5

MATLAB CODES:

The following is the MATLAB function prepared for the implementation of the suggested scheme. (MATLAB codes can
also be downloaded from the author’s webpage, http://www.eee.metu.edu.tr/∼ccandan/pub.htm)

1 function out = digscale(s,beta,Npoint)
2 % function out = digscale(s,beta,Npoint)
3 % Scales the input vector s by beta.
4 %
5 % The operation is equivalent of out(t) = s(beta t) in discrete time
6 % The operation can be interpretted as the sampling rate
7 %
8 % s : input
9 % beta : scaling coefficient (beta = 1 - alpha)

10 % Npoint : Number of points to be used Lagrange interpolation
11 %
12 % out : output
13 %
14 % Cagatay Candan
15 % Jan. 2013
16 %
17

18 if Npoint ≤ 0, disp ('Npoint should be at least 2'); return; end;
19

20 alpha = 1 - beta; % alpha > 0 --> Higher Sampling Rate or sig. expands in time
21 % alpha < 0 --> Lower Sampling Rate or sig. compresses
22

23 N = length(s);
24

25 if alpha>0, %Upsampling
26

27 %Construct A and B (state model)
28 A = diag(ones(1,Npoint-1),-1);
29 b = zeros(Npoint,1); b(1)=1;
30

31 %Construct C1 for the output of differencing blocks
32 C1 = zeros(Npoint,Npoint);
33 dum = 1; C1(1,:)=[dum zeros(1,Npoint-1)];
34 for dumind = 1:Npoint-1,
35 dum = conv([1 -1],dum);
36 C1(dumind+1,:)=[dum zeros(1,Npoint-1-dumind)];
37 end;
38

39 %Delay (Compensate Anti-Causal Part of Response)
40 delay = floor((Npoint-2)/2);
41 x = zeros(Npoint,1); %Default Buffer Contents
42 for input_index = 1: delay, %Fill Buffers "delay" number of times
43 x = A*x + b*s(input_index); %State Model for buffer contents
44 end;
45

46 %
47 output_index = 0; D = -alpha;
48 for input_index=delay+1:N,
49 D = D + alpha;
50 output_index = output_index + 1;
51

52 if D > 1 + 100*eps, %Insert Extra Sample
53 [coefvec,Dvec2]=construct_multipliers(Npoint,alpha,output_index-1);
54 out(output_index) = coefvec'*out_diff; %Extra Sample without buffer update
55 % coefvec'*C1;
56

57 D = D + alpha - 1;
58 output_index = output_index + 1;
59 end;
60

61 x = A*x + b*s(input_index); %State Model for buffer contents
62 out_diff = C1*x; %Output of differencing blocks
63

64 [coefvec,Dvec2]=construct_multipliers(Npoint,alpha,output_index-1);
65 % coefvec'*C1,
66

67 out(output_index) = coefvec'*out_diff;
68

69

70 end;

6

71

72 else %if alpha<0 %Downsampling
73

74 %Construct A and B (state model)
75 A = diag(ones(1,Npoint-1),-1);
76 b = zeros(Npoint,1); b(1)=1;
77

78 %Construct C1 for the output of differencing blocks
79 C1 = zeros(Npoint,Npoint);
80 dum = 1; C1(1,:)=[dum zeros(1,Npoint-1)];
81 for dumind = 1:Npoint-1,
82 dum = conv([1 -1],dum);
83 C1(dumind+1,:)=[dum zeros(1,Npoint-1-dumind)];
84 end;
85

86 %Delay (Compensate Anti-Causal Part of Response)
87 delay = floor((Npoint-2)/2)+2;
88 x = zeros(Npoint,1); %Default Buffer Contents
89 for input_index = 1: delay, %Fill Buffers "delay" number of times
90 x = A*x + b*s(input_index); %State Model for buffer contents
91 end;
92

93 %
94

95 output_index = 1;
96 out(1) = s(1); D = 0;
97 for input_index=delay+1:N,
98 D = D - alpha;
99

100 x = A*x + b*s(input_index); %State Model for buffer contents
101 out_diff = C1*x; %Output of differencing blocks
102

103 if D > 1 - 100*eps, %Skip Sample
104 D = D - 1 + alpha;
105 continue,
106 else
107 [coefvec,Dvec2]=construct_multipliers(Npoint,alpha,output_index);
108 % coefvec'*C1,
109 output_index = output_index + 1;
110 out(output_index) = coefvec'*out_diff;
111 end;
112

113

114 end;%end of else
115 end; %end of if alpha
116

117 %%%%%%%%
118 function [coefvec,Dvec2] = construct_multipliers(Npoint,alpha,n)
119 % Calculates the multipliers shown with d_i[n] in the manuscript
120 %
121 % coefvec : multipliers d_i[n], 0 ≤ i ≤ Npoint -1
122 % Dvec2 : generated to verify the system
123 % : fliplr(Dvec2) should be identical to Dvec
124 % % calculated in the main function
125 %
126 % The output of this function is not used in the implementation given.
127 % The function is presented to verify the results of manuscript.
128

129 if (alpha > 0), %upsampling
130 if rem(Npoint,2) == 0, %Npoint : Even
131 D = - ((Npoint - 2)/2 + rem(alpha*n,1+1500*eps));
132 else %Npoint : Odd
133 D = - ((Npoint - 3)/2 + rem(alpha*n,1+1500*eps));
134 end;
135 else %alpha <0, downsampling
136 if rem(Npoint,2) == 0, %Npoint : Even
137 D = - ((Npoint - 2)/2 + rem((1+alpha)*n,1+1500*eps));
138 else %Npoint : Odd
139 D = - ((Npoint - 3)/2 + rem((1+alpha)*n,1+1500*eps));
140 end;
141 end;
142

143 coefvec = zeros(Npoint,1);
144 coefvec(1) = 1; diffblock{1}=1;
145 for ii=1:Npoint-1,
146 coefvec(ii+1) = coefvec(ii)/ii * (D + ii-1);
147 diffblock{ii+1} = conv([1 -1],diffblock{ii});

7

148 end;
149

150 Dvec2 = zeros(1,Npoint);
151 for ii=1:Npoint,
152 Dvec2 = Dvec2 + ...
153 coefvec(ii)*[diffblock{ii} zeros(1, Npoint-length(diffblock{ii}))];
154 end;

8

The following script generates Figure 5 and is given to illustrate the usage of the function digscale.m

1 N=10; alpha = 1/5;
2 omega = 2*pi*1/8;
3 n=0:N-1;
4 s=cos(omega*n);
5

6 Npoint=2; out2 = digscale(s,1-alpha,Npoint);
7 Npoint=4; out3 = digscale(s,1-alpha,Npoint);
8

9 nout = -1 + (1:length(out2)); sout = cos(omega*(1-alpha)*nout);
10

11 h = figure(1); set(h,'Defaultaxesfontsize',12); set(h,'Defaulttextfontsize',12);
12

13 stem(0:length(s)-1,s,'s','markersize',10,'linewidth',2), hold all;
14 stem(0:length(sout)-1,sout,'r','markersize',11,'linewidth',2),
15 plot(0:length(out2)-1,out2,'bd','markersize',8,'linewidth',2),
16 plot(0:length(out3)-1,out3,'kp','markersize',8,'linewidth',2),
17

18 title(['Scaling x[n] = cos(\pi/4 n) by \beta = 4/5']);
19 legend('Input','Desired Output','Scheme Output (N=2)', 'Scheme Output (N=4)','location','SouthEast');
20 xlabel('n');
21 hold off;

9

The following script generates Figure 7 and is given to illustrate the usage of the function digscale.m

1 N=500;
2 select=20:119;
3

4 freqvec=linspace(0.01,0.45,45);
5 Npointvec=2:6;
6 alpha = 0.1;
7

8 beta = 1 - alpha;
9 n=0:N-1;

10

11 h = figure(1); set(h,'Defaultaxesfontsize',12); set(h,'Defaulttextfontsize',12);
12 set(gca,'xtick',0.05:0.05:0.45)
13

14 rmssignal = 1/sqrt(2);
15 semilogy(freqvec,rmssignal*ones(1,length(freqvec)),'--','linewidth',2); drawnow; hold all;
16

17 for Npoint = Npointvec,
18 error = [];freqind = 0;
19 for freq = freqvec,
20 omega = 2*pi*freq;
21 s=cos(omega*n);
22

23 out = digscale(s,beta,Npoint);
24 nout = -1 + (1:length(out));
25 s2 = cos(omega*(1-alpha)*nout);
26 e = s2-out;
27 e = e(select);
28 freqind = freqind + 1;
29 error(freqind) = sqrt(mean(e.ˆ2));
30

31 end;
32 semilogy(freqvec,error,'.-','linewidth',2,'markersize',20); drawnow;
33 end;
34

35 title(['RMS error in the scaling of cos(\omegan) by \beta = ' num2str(beta) char (10) ...
36 '(change of sampling rate by 1/\beta)']);
37

38 xlabel('normalized frequency (\omega / 2\pi)');
39 ylabel('RMS'); ;
40 dumstring={'Signal RMS', 'N = 2' , 'N = 3' ...
41 , 'N = 4' , 'N = 5' , 'N = 6'};
42 legend(dumstring,'Location','SouthEast');
43 set(gca,'xtick',0.05:0.05:0.45)
44 dum = axis; axis([0 0.45 dum(3:4)]);
45 grid on
46 hold off;

