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a b s t r a c t 

An invariant function approach for the computationally efficient (non-iterative and gridless) maximum 

likelihood (ML) estimation of unknown parameters is applied on the real-valued sinusoid frequency esti- 

mation problem. The main attraction point of the approach is its potential to yield a ML-like performance 

at a significantly reduced computational load with respect to conventional ML estimator that requires re- 

peated evaluation of an objective function or numerical search routines. The numerical results indicate 

that the suggested estimator closely tracks the Cramer-Rao bound in the asymptotic region and performs 

very close to the ML estimator in other regions. 
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. Introduction 

The maximum likelihood frequency estimation of a sinusoid is 

 classical problem of statistical signal processing with important 

pplications in array signal processing, spectrum estimation, com- 

unications, time-series analysis and others [1,2] . In this study, 

e present an alternative approach for the frequency estimation 

f real-valued sinusoids through invariant functions. The main ad- 

antage of the approach is its estimation accuracy in spite of its 

ow computational complexity. Specifically for the frequency esti- 

ation problem, higher complexity methods utilize the maximum 

ikelihood search, eigen or subspace decompositions, Kenefic and 

uttall [3] , So et al. [4] , So et al. [5] ; while the suggested approach

s based on transforming the input to Discrete Fourier Transform 

DFT) domain and constructing a function of the Fourier spectrum 

amples which is invariant to the nuisance parameters of the prob- 

em. 

The phrase of frequency estimation can refer to the parame- 

er estimation problem for both complex-valued ( Ae j(ωn + φ) ) and 

eal-valued ( A cos (ωn + φ) ) sinusoid signals with unknown ampli- 

ude, phase and frequency. For both real- and complex-valued si- 

usoids, the estimation of frequency is a non-linear parameter es- 

imation problem; while the amplitude and phase estimation can 

e formulated as a linear estimation problem given the knowl- 

dge of frequency. The complex-valued sinusoids are in general 
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he low-pass equivalent of a band-pass signal and utilized in spec- 

rum modelling, direction of arrival estimation, communications 

roblems. There are several methods for the parameter estima- 

ion of complex-valued sinusoids (also called complex exponen- 

ials) [2] . Among them, Quinn [6] , Quinn and Hannan [7] , Macleod

8] , Aboutanios and Mulgrew [9] , Jacobsen and Kootsookos [10] , 

andan [11 , 12] , Liao and Lo [13] , Orguner and Candan [14] , Bel-

ga and Petri [15] , Fan and Qi [16] , Chen et al. [17] overlap with

he invariant function approach described herein where the goal is 

o develop a very low complexity estimator for this fundamental 

roblem. For example, the unknown frequency ω = 2 π(k p + δ) /N

s estimated in two-stages in Quinn [6] , Quinn and Hannan [7] , 

acleod [8] , Aboutanios and Mulgrew [9] , Jacobsen and Koot- 

ookos [10] , Candan [11] , 12 ], Liao and Lo [13] , Orguner and Can-

an [14] , Belega and Petri [15] , Fan and Qi [16] , Chen et al. [17] . In

he first stage N-point DFT of the input is calculated and the DFT 

ndex with the peak magnitude is declared as ̂  k p (also see Fig. 1 ). 

n the second stage (the fine frequency estimation stage), the re- 

aining unknown δ (fine frequency part) is estimated through the 

elation 

 = f −1 

(
Re 

{
R [ ̂  k p − 1 ] − R [ ̂  k p + 1 ] 

2 R [ ̂  k p ] − R [ ̂  k p − 1 ] − R [ ̂  k p + 1 ] 

})
(1) 

here f −1 (·) refers to the inverse function of f (δ) = 

an (πδ/N) / tan (π/N) and R [ ·] is the N-point DFT samples, as 

llustrated in Fig. 1 . 1 The complexity of the estimator given by 
1 The estimator in (1) is selected as an illustrative example of its class due to the 

lgebraic simplicity of f (·) function in its expression [11,12] . 

https://doi.org/10.1016/j.sigpro.2021.108098
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Fig. 1. An illustration for the first stage of the proposed method 
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1) comprises of i. calculation of N-point DFT, ii. calculation of ratio 

ppearing in the argument of f −1 (·) , iii. evaluation of the inverse 

unction. In spite of its extreme low complexity, the performance 

f the estimator is surprisingly good [12] . 

The history of two-stage estimators dates back to early 1950’s 

o the works of Woodward and Kotelnikov, with their applica- 

ion in radar range measurement [18] and pulse position/frequency 

odulation systems [19] , according to the note in the classical 

extbook of Van Trees, [20, p.278] . In the context of frequency es- 

imation, Bartlett is among the first to suggest the usage of DFT 

amples for the frequency estimation in Bartlett [21 , Appendix 1]; 

ut Bartlett does not develop the details of his suggestion. Rife 

t al. explicitly describe the coarse- and fine- search stages for 

he frequency estimation problem in 1970’s and propose a fine- 

requency estimator based on the magnitude of the DFT samples 

n Rife and Vincent [22 , Method 2] and suggest to use a numerical

earch based solution via the secant method in Rife and Boorstyn 

23 , Section IV]. In early 1990’s, Quinn have developed several 

omputationally efficient and highly accurate fine frequency esti- 

ators [6,24] . A complete account of these estimators and their 

erformance analyses in terms of asymptotic MSE, threshold be- 

aviour and much more is given by Quinn and Hannan [7] . In early

0 0 0’s, Aboutanios have developed several novel fine-frequency es- 

imators for N-point and 2N-point DFT samples in his Ph.D. work 

25] . Among the suggested methods of Aboutanios, the estima- 

or today known as Aboutanios and Mulgrew estimator stands out 

ith its high accuracy and low computational complexity [9] . In 

ecent years, the literature on the fine-frequency estimators has 

een extended to the real/complex valued sinusoids with/without 

indowing operation via processing of 2, 3 or more DFT samples 

10–17] . All of these methods mainly differ in the non-linear ex- 

ression used in the fine-frequency estimation stage. In this study, 

e refer the functions f (·) involved in the fine-frequency estima- 

ion stage, such as the one in (1) , as the invariant function. 

The frequency estimation for real-valued sinusoids is a bit more 

omplicated than its complex-valued counterpart due to the inter- 

ction of two complex-valued sinusoids forming the real-valued 

inusoid. In literature, conventional linear prediction based ap- 

roaches have been extended to the case of real-valued sinusoids 

n So et al. [4] , Chan et al. [26] , So et al. [27] . Sub-space based

ethods have been developed in So et al. [5] and recently, some 
2 
ow-complexity estimators have been proposed [28,29] . Different 

rom earlier effort s, the low complexity estimators suggested in 

he literature aim to cancel one of complex exponentials forming 

he cosine waveform and following the cancellation operation, well 

nown invariant function based estimators for the complex expo- 

entials are utilized. For example, the method of Djukanovicàims 

o eliminate one of the complex exponentials forming cos (ωn + 

) = (e jωn + φ + e − jωn −φ ) / 2 by filtering [28] . To do the elimination,

 rough frequency estimate is generated and the complex exponen- 

ial with the negative valued frequency is filtered. The method of 

e et al. [29,30] is based on a similar principle and estimates not 

nly frequency, but also the amplitude and phase to implement an 

nterference cancellation procedure. 

Different from existing low complexity estimators, we suggest 

n approach based on an invariant function for the real-valued 

inusoid frequency estimation problem in complete analogy with 

he ones for the complex exponentials. The suggested estimator 

equires the inverse mapping f −1 (·) for the developed invariant 

unction. The inverse mapping is independent of data and can be 

alculated offline and stored as a look-up table or the inverse func- 

ion can be computed online via a Taylor series based scheme at a 

ery low complexity. It should be underlined that the suggested 

cheme uses iterations only for the online evaluation of the in- 

erse function via Taylor series, similar to the numerical evalu- 

tion of any transcendental function. Hence, we suggest a grid- 

ess, non-iterative (in terms of data processing), very low compu- 

ational complexity estimator with a ML-like performance for the 

eal-valued sinusoid frequency estimation problem. 

. Preliminaries 

A sampled sinusoidal signal with an unknown amplitude A, 

hase φ and frequency ω is observed under zero mean additive 

hite Gaussian noise (AWGN) w [ n ] with variance σ 2 
w 

, 

[ n ] = A cos (ωn + φ) + w [ n ] , n = { 0 , . . . , N − 1 } . (2) 

e consider the amplitude and the phase of the sinusoid as the 

uisance parameters and treat the frequency ω as the sole pa- 

ameter of interest. In fact, since r[ n ] can be written as r[ n ] =
 c cos (ωn ) + A s sin (ωn ) + w [ n ] with A c = A cos (φ) , A s = −A sin (φ) ;

he maximum likelihood estimation of amplitude and phase re- 

uces to a simpler problem with a linear observation model given 

he frequency estimate. The signal-to-noise-ratio (SNR) definition 

dopted in this study is SNR = A 

2 / (2 σ 2 
w 

) . 

.1. Maximum-likelihood (ML) estimator 

After some elementary manipulations outlined in Appendix A , 

he maximum-likelihood estimate of frequency is expressed as 

ˆ  ML = arg max 
ω 

| R (e jω ) | 2 − sin (ωN) 
N sin (ω) 

Re 
{

R 

2 (e jω ) e jω(N−1) 
}

N − sin 2 (ωN) 

N sin 2 (ω) 

. (3) 

ere R (e jω ) = 

∑ N−1 
n =0 r[ n ] e − jωn is the discrete-time Fourier trans- 

orm (DTFT) of the input. The ML expression for the same problem 

lso appears in Kay [31 , Eq. (7.65)] and [3] . Different from these 

xpressions, (3) presents the relation in terms of DTFT of the input 

esulting in a simpler expression. 

A straightforward implementation of the ML estimator in (3) is 

he application fast Fourier transform (FFT) for the calculation 

f DTFT samples and execution of a search for the likelihood 

axima. Interestingly, the peak location of the energy spectra, 

rg max ω | R (e jω ) | 2 , is not the maximum likelihood estimate for a 

nite N. Yet, as the number of observations N increases, the ML es- 

imator converges to the peak localization in the magnitude DTFT 

pectra (periodogram). To reduce the computational complexity, a 
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Algorithm 1: Proposed method, (see [35] for a ready-to-use 

MATLAB implementation). 

Input : r[ n ] : N samples of noisy real-valued sinusoid; 

Output : ̂ ω = 

2 π
2 N ( ̂

 k p + ̂

 δF ) rad./sample; 

1 R [ k ] = fft (r[ n ] , 2 N ) ( 2 N -point FFT calculation); 

2 
̂ k p = arg max 

0 ≤k ≤N−1 

| R [ k ] | 2 (locate maxima in spectrum); 

3 Set ˜ R [ l] = R [ l + ̂

 k p ] e 
j π(N−1) 

2 N 
(l+ ̂ k p ) , l = {−1 , 0 , 1 } ; 

4 Set ˜ R re [ l] = Re { ̃  R [ l] } and ̃

 R im 

[ l] = Im { ̃  R [ l] } ; 
5 Evaluate ratio re and ratio im 

; use (9) 

6 if lookup-table exists, 

7 
̂ δre = f −1 

re ( ratio re ) , ̂ δim 

= f −1 
im 

( ratio im 

) 

8 else 

9 Set δ0 
re = 0 . 25 , δ0 

im 

= 0 . 25 and maxiter = 10 ; 

10 for iteration from 1 to maxiter, 

11 
̂ δre = f −1 

re ( ratio re , δ0 
re ) ; use (14) 

12 
̂ δim 

= f −1 
im 

( ratio im 

, δ0 
im 

) ; 

13 Set δ0 
re = ̂

 δre and δ0 
im 

= ̂

 δim 

; 

14 end for 

15 end 

16 Evaluate the fusion coefficient α; use (16) 

17 
̂ δF = α̂ δre + (1 − α) ̂  δim 

; 

18 Return 

̂ ω = 

2 π
2 N ( ̂

 k p + ̂

 δF ) . 
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hirp-z transform based DTFT calculation over a portion of the 

pectrum can be also implemented. In this study, our goal is to 

resent a much lower complexity estimator which is almost as 

ood as the ML estimator given by (3) . 

.2. Cramer-Rao bound 

For finite N, the Cramer-Rao bound (CRB) for the real-valued 

inusoid depends on the nuisance parameter set (amplitude and 

hase) and on the parameter of interest (frequency). As N → ∞ , 

he term 

∑ N−1 
n =0 sin (2 ωn + 2 φ) appearing in the Fisher information 

atrix (FIM) entries given in Kay [31 , p. 56] approaches 0 and CRB

ecomes independent of phase and frequency. The bound as N → 

 is called the asymptotic Cramer-Rao bound (ACRB): 

{ (ω − ˆ ω ) 2 } ≥ ACRB = 

12 

SNR (N 

2 − 1) N 

, as N → ∞ . (4) 

e also note that the ACRB expression in (4) coincides with the 

ybrid Cramer-Rao bound (HCRB) expression for finite N provided 

hat the signal phase is taken as a uniformly distributed random 

ariable in [0 , 2 π) . HCRB is a Bayesian performance bound uti- 

ized in the presence of random nuisance parameters, [32] . In the 

umerical results section, we randomize the phase φ and utilize 

CRB (i.e. the ACRB expression in (4) ) as a performance bench- 

ark. Since the value of phase can significantly affect the perfor- 

ance, its non-informative randomization results in a fair perfor- 

ance comparison for the frequency estimation problem. Lastly, 

e prefer to express the ACRB expression with the units of DFT 

ins. This unit convention is further explained in Section 4 . 

. Proposed method 

The proposed method is composed of two stages. The first 

tage is the calculation of 2 N-point DFT of the input r[ n ] =
 cos 

(
2 π
2 N (k p + δ) n + φ

)
+ w [ n ] , n = { 0 , . . . , N − 1 } . Note that we

ave switched the notation for the frequency variable from ω to 
2 π
2 N (k p + δ) . Here k p + δ denotes the frequency in terms of 2 N-

oint DFT bins where k p is an integer between 0 and N and δ is a

eal number in (−0 . 5 , 0 . 5] (also see Fig. 1 ). The first stage output

s the DFT bin index with the maximum magnitude. This index is 

enoted by ̂ k p , as shown in Algorithm 1 listing. In essence, the 

rst stage implements a coarse search for the frequency via pe- 

iodogram. Since the search is coarse, there is no need to utilize 

he exact ML expression (3) in this stage. (Interested readers can 

lso examine earlier works on the frequency estimation of com- 

lex exponential signals utilizing the same model for more infor- 

ation, Quinn [6] , Quinn and Hannan [7] , Macleod [8] , Aboutanios 

nd Mulgrew [9] , Jacobsen and Kootsookos [10] , Candan [11] , 12 ],

iao and Lo [13] , Orguner and Candan [14] , Belega and Petri [15] ,

an and Qi [16] .) 

The second stage, fine frequency estimation stage, utilizes three 

FT outputs with the indices { ̂  k p − 1 , ̂  k p , ̂
 k p + 1 } to estimate δ, as

hown in Fig. 1 . To produce the fine frequency estimate ̂ δ, a non-

inear function of three arguments is constructed and this function 

s evaluated with the arguments of R [ ̂  k p + l] , l = {−1 , 0 , 1 } . The op-

ration is, in principle, similar to the one given by (1) . The final es-

imate for the frequency becomes ̂  k p + ̂

 δ with the unit of DFT bins 

r ̂ ω = 

2 π
2 N ( ̂

 k p + ̂

 δ) radians per sample. 

The performance of the proposed method critically depends on 

he non-linear function at the fine frequency estimation stage. By 

esign, this function should be invariant to the nuisance parame- 

ers of problem in the absence of noise. To illustrate the invariant 

unction, let’s examine the complex exponential signal model with 

[ n ] = A exp ( j(ωn + φ)) + w [ n ] , n = { 0 , . . . , N − 1 } . In the absence

f noise, DFT of r[ n ] becomes R [ k ] = A exp ( j φ) DFT { exp ( j ωn ) } . It

an be noticed that the insertion of R [ k ] in (1) results in the
3 
ancellation of A exp ( jφ) terms appearing on the numerator and 

enominator of ratio in the argument of the real part operator. 

ence, this ratio is invariant to amplitude A and phase φ. Trivially, 

 function of this ratio is also an invariant function. It is possible 

o suggest different invariant functions for the same problem [6,8–

6] . The estimator performance critically depends on the proper- 

ies of the invariant function, i.e. some invariant functions are more 

uccessful in the tracking of the Cramer-Rao bound such as the one 

roposed by Aboutanios and Mulgrew [9] . 

.1. Constructing invariant function for real-valued sinusoids 

In the absence of noise, 2 N-point DFT of the input, 

 [ k ] = 

N−1 ∑ 

n =0 

r[ n ] e − j 2 π2 N nk = A 

N−1 ∑ 

n =0 

cos 

(
2 π

2 N 

(k p + δ) n + φ
)

e − j 2 π2 N nk (5) 

an be expressed as 

 [ k ] = 

A 

2 

e − j π(N−1) 
2 N k 

⎛ ⎝ cos ( ̃  φ) 

⎡ ⎣ 

sin 

(
π(k p −k + δ) 

2 

)
sin 

(
π(k p −k + δ) 

2 N 

) + 

sin 

(
π(k p + k + δ) 

2 

)
sin 

(
π(k p + k + δ) 

2 N 

)
⎤ ⎦ 

+ j sin ( ̃  φ) 

⎡ ⎣ 

sin 

(
π(k p −k + δ) 

2 

)
sin 

(
π(k p −k + δ) 

2 N 

) −
sin 

(
π(k p + k + δ) 

2 

)
sin 

(
π(k p + k + δ) 

2 N 

)
⎤ ⎦ 

⎞ ⎠ (6)

here ˜ φ = φ + 

π
2 N (k p + δ)(N − 1) , after some elementary manipu- 

ations. 

In the absence of noise or at high SNR, the first stage output 
 

 p exactly matches the integer part of the unknown frequency, 

hat is ̂ k p = k p . More specifically, it is known from the literature 

hat above a certain SNR value, called the threshold SNR, the 

oarse search result exactly matches the true frequency bin k p 
ith an overwhelming probability [7,33,34] . The SNR region above 

he threshold SNR value is referred as the high SNR region or the 

symptotic region in the literature. Hence, with the high SNR re- 

ion assumption, which implies ̂  k p = k p , the DFT outputs with the 
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Fig. 2. Inverse of the invariant functions f re (·) and f im (·) for a look-up table implementation. 
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ndices { k p − 1 , k p , k p + 1 } , are assumed to be used in the develop-

ent of the fine-frequency estimator. Here l � k − k p , denotes the 

ffset from the index k p or more generally the offset from the in- 

ex ̂  k p which is the first stage output. 

Next, we define the phase corrected version of the 2 N-point 

FT outputs as 

 

 [ l] = R [ k ] e j 
π(N−1) 

2 N k | k = l+ k p = R [ l + k p ] e 
j π(N−1) 

2 N (l+ k p ) (7) 

nd denote the real and imaginary parts of ˜ R [ l] = ̃

 R re [ l] + j ̃  R im 

[ l]

s ˜ R re [ l] and 

˜ R im 

[ l] , respectively. From (6) , ˜ R re [ l] and 

˜ R im 

[ l] can be

xpressed as 

˜ R re [ l] � Re { ̃  R [ l] } = M re 

⎡ ⎣ 

sin 

(
π(δ−l) 

2 

)
sin 

(
π(δ−l) 

2 N 

) + 

sin 

(
π(2 k p + l+ δ) 

2 

)
sin 

(
π(2 k p + l+ δ) 

2 N 

)
⎤ ⎦ , 

 

 im 

[ l] � Im { ̃  R [ l] } = M im 

⎡ ⎣ 

sin 

(
π(δ−l) 

2 

)
sin 

(
π(δ−l) 

2 N 

) −
sin 

(
π(2 k p + l+ δ) 

2 

)
sin 

(
π(2 k p + l+ δ) 

2 N 

)
⎤ ⎦ , (8) 

here M re = 

A 
2 cos ( ̃  φ) and M im 

= 

A 
2 sin ( ̃  φ) . Here ˜ φ = φ + 

π
2 N (k p +

)(N − 1) is a constant depending on the unknown parameters, 

ut independent of l. 

Temporarily focusing on 

˜ R re [ l] , it can be easily verified that the 

ollowing expression involving ˜ R re [ l] , l = {−1 , 0 , 1 } is invariant to

he nuisance parameters of the problem, namely the signal ampli- 

ude and phase, 

atio re � 

˜ R re [1] − ˜ R re [ −1] 

2 ̃

 R re [0] − ˜ R re [1] − ˜ R re [ −1] 
� f re (δ) . (9) 

tated differently, the ratio re given by (9) is solely a function of δ
n the absence of noise. We emphasize this fact with the notation 

f ratio re = f re (δ) in (9) . 

We also use the same invariant relation form for the imaginary 

art of DFT outputs given in (8) and define 

atio im 

� 

˜ R im 

[1] − ˜ R im 

[ −1] 

2 ̃

 R im 

[0] − ˜ R im 

[1] − ˜ R im 

[ −1] 
� f im 

(δ) . (10) 

ote that f re (δ) � = f im 

(δ) due to the sign difference in the second

omponent of the sum (8) in the definition of ˜ R re [ l] and 

˜ R im 

[ l] . 

Assuming that the inverse mapping for the invariant functions, 

f −1 
re (·) or f −1 

im 

(·) , exists; an estimate for δ can be generated, in

rinciple, via the application of the inverse function on the ra- 

ios, say ̂ δre = f −1 
re ( ratio re ) . Fig. 2 shows the inverse mappings 
4 
f −1 
re ( ratio re ) and f −1 

im 

( ratio im 

) for different parameter settings of N

nd k p . Unfortunately, there is no simple analytical expression for 

he inverse function for the suggested invariant function. Hence, 

e need to utilize either a look-up table or numerical techniques 

or the inverse function mapping. Below, we describe a numerical 

rocedure for the inverse function mapping when the look-up ta- 

le approach is not feasible or simply not preferred, say to achieve 

 better numerical accuracy. 

.2. Inversion of invariant function 

In [12] , a similar invariant function for the frequency estimation 

f complex exponentials is given as f (δ) = tan (πδ/N) / tan (π/N) as 

iven in (1) . For the complex exponential problem, it is possible 

o express the inverse function analytically in terms of elementary 

unctions; but this is not the case for the one suggested in (9) .

ig. 2 shows the inverse of the invariant functions for different k p 
nd N values. Different from the complex exponential problem, the 

nvariant function for the real-valued sinusoid depends on both k p 
nd N. Below, we describe a general, Taylor series based iterative 

ethod to establish the inverse mapping. 

Focusing on the ratio re given in (9) , we consider ˜ R re [ l] , l =
−1 , 0 , 1 } as a function of δ and expand the function around an

rbitrary non-zero δ = δ0 via the Taylor series and retain only 

he first two terms of the series. The approximation can be ex- 

ressed as ˜ R re [ l] ≈ K l + 

˙ K l (δ − δ0 ) . Here K l = ̃

 R re [ l] | δ= δ0 
and 

˙ K l =
d 

dδ
˜ R re [ l] 

∣∣
δ= δ0 

can be explicitly given as 

 l = M re 

[
h 

(
π(δ0 − l) 

2 

)
+ h 

(
π(2 k p + l + δ0 ) 

2 

)]
(11) 

˙ 
 l = 

π

2 

M re 

[
h 

′ 
(

π(δ0 − l) 

2 

)
+ h 

′ 
(

π(2 k p + l + δ0 ) 

2 

)]
here h (x ) = sin (x ) / sin (x/N) and h ′ (x ) = 

d 
dx 

h (x ) =
N cos (x ) sin (x/N) −sin (x ) cos (x/N) 

N sin 2 (x/N) 
. 

By substituting the Taylor series approximations for 

 ̃

 R re [ −1] , ̃  R re [0] , ̃  R re [1] } in (9) , we get 

atio re ≈ A re + 

˙ A re (δ − δ0 ) 

B re + 

˙ B re (δ − δ0 ) 
, (12) 

here A re = K 1 − K −1 , ˙ A re = 

˙ K 1 − ˙ K −1 and B re = 2 K 0 − K 1 − K −1 ,
˙ 
 re = 2 ̇ K 0 − ˙ K 1 − ˙ K −1 . 
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To facilitate a simple approximation for f −1 
re (δ) , valid around 

= δ0 ; we multiply the numerator and denominator of the ratio 

n the right side of (12) by B re − ˙ B re (δ − δ0 ) and ignore all second 

rder terms to get, 

atio re ≈ A re 

B re 
+ 

˙ A re B re − A re ˙ B re 

B 

2 
re 

(δ − δ0 ) . (13) 

rom (13) , the unknown δ can be solved as 

 

re = 

B 

2 
re 

˙ A re B re − A re ˙ B re 

(
ratio re − A re 

B re 

)
+ δ0 . (14) 

n practice, the inversion operation is applied iteratively; that is, 

e use the result of an earlier iteration as the expansion point ( δ0 )

f the next iteration. With the iterative operation, the inverse map- 

ing becomes a non-linear function of ratio re . The accuracy of the 

uggested iterative inversion scheme is examined in the numerical 

esults section. A detailed implementation is available in Candan 

nd Celebi [35] . 

The same arguments can be repeated verbatim for the inver- 

ion of f im 

(δ) function. Hence, a second estimate can be gener- 

ted from the imaginary parts of ˜ R [ l] , l = {−1 , 0 , 1 } via the re-

ation 

̂ δim 

= 

B 2 
im 

˙ A im 

B im 

−A im 

˙ B im 

(
ratio im 

− A im 

B im 

)
+ δ0 . where A im 

, ˙ A im 

and 

 im 

, ˙ B im 

are defined similarly. 

.3. Independence of ̂  δre and ̂  δim 

As shown by Quinn [36] , the real and imaginary parts of 2 N-

oint DFT output calculated at step 1 of Algorithm 1 listing are 

orrelated. Yet, as shown in ( Appendix B ), once the phase correc- 

ion step of Algorithm 1 (step 3) is executed, the resultant real 

nd imaginary parts (step 4) become independent. Hence, the es- 

imates, ̂  δre and ̂

 δim 

, which are derived solely from real and imagi- 

ary parts of ̃  R [ l] (steps 5 to 15) are also independent random vari-

bles. This important result enables us to utilize a simple fusion 

ule for uncorrelated random variables as shown in the step 17 of 

lgorithm 1 Listing. We believe that the phase correction opera- 

ion at step 3, decorrelating real and imaginary parts, can be use- 

ul in other applications involving zero-padded DFTs. In addition, 

ifferent versions of estimate fusion have been previously studied 

y Quinn and Hannan, such as [7, Algorithm 5, p.197] or [7, Al- 

orithm 4, p.188] , in their influential research monograph. The fu- 

ion strategy in this study can be interpreted as an effort along the 

ame line of thought. 

.4. Fusing estimates 

The final step of the suggested method is the fusion of the es- 

imates produced from the real and imaginary parts of ˜ R [ l] . The 

stimates ̂  δre and ̂

 δim 

are combined to reduce the estimation error. 

y construction, ̃  R re [ l] and ̃

 R im 

[ l] are independent Gaussian random 

ariables with variance σ 2 
w 

N/ 2 , as shown in ( Appendix B ). Other

esults of importance from ( Appendix B ) are as follows: The cross- 

orrelation of ˜ R re [ l 1 ] and 

˜ R im 

[ l 2 ] is zero for all (l 1 , l 2 ) pairs. Yet
 

 re [ l 1 ] is correlated with 

˜ R re [ l 2 ] for odd valued l 1 − l 2 . The same is

lso true for ˜ R im 

[ l 1 ] . The most important fact for fusion purposes

s that the estimates ̂ δre and 

̂ δim 

, derived from 

˜ R re [ l] and 

˜ R im 

[ l] 

espectively, are independent random variables. To combine them, 

e suggest to apply the best linear unbiased estimator (BLUE) rule 

hich is applicable for uncorrelated random variables. 

From (8) , it can be noted that the input SNR for the esti-

ates ̂ δre and 

̂ δim 

are determined by the factors M re = 

A 
2 cos ( ̃  φ) 

nd M im 

= 

A 
2 sin ( ̃  φ) , respectively. Depending on the unknown pa- 

ameter ˜ φ; SNR and therefore the accuracy of the estimates ̂  δre and 
5 
 

im 

can vary significantly. We suggest to use the following linear 

nbiased fusion rule to generate the final estimate ̂  δF , 

 

F = α̂ δre + (1 − α) ̂  δim 

. (15) 

he fusion coefficient α should be ideally selected as αideal = 

 

2 
re / (M 

2 
re + M 

2 
im 

) = cos 2 ( ̃  φ) . Yet, the signal phase is a nuisance pa-

ameter which is not estimated in the invariant function setting. 

nstead, we suggest to use the following approximation to the ideal 

usion coefficient 

� 

˜ R 

2 
re [0] ˜ R 

2 
re [0] + ̃

 R 

2 
im 

[0] 
= 

( 

1 + 

(˜ R im 

[0] ˜ R re [0] 

)2 
) −1 

. (16) 

he approximation can be justified by noting from (8) that ˜ R im 

[0] ˜ R re [0] 
= tan ( ̃  φ) 

[
tan 

(
πk p 

2 N 

)
cot 

(
π(k p + δ) 

2 N 

)]p 

︸ ︷︷ ︸ 
≈1 

≈ tan ( ̃  φ) , 

or N 
 1 and k p 
 1 . Here p = (−1) ̂
 k p is the parity of ̂ k p (first

tage output), taking the value of 1 or −1 depending on ̂

 k p is an 

dd or even integer, see ( Appendix C ) for details. 

Finally, the suggested fusion coefficient, given by (16) , can 

e expressed as α ≈
(
1 + tan 

2 ( ̃  φ) 
)−1 = cos 2 ( ̃  φ) for N 
 1 and 

 p 
 1 . This concludes the derivation of the estimator given in 

lgorithm 1 . 

.5. Estimator MSE at High SNR 

The MSE at high SNR can be written as E{ (δ −̂ δF ) 
2 } = 

f re + f im 

SNR 
,

here f re = 

NB 2 re −2 A re B re ρ+ σ 2 
re A 

2 
re 

( ̇ A re B re −A re ̇ B re ) 2 
, f im 

= 

NB 2 
im 

+2 A im 

B im 

ρ+ σ 2 
im 

A 2 
im 

( ̇ A im 

B im 

−A im 

˙ B im 

) 2 
,σ 2 

re = 

 N − 4 γ1 − 2(−1) k p (γ2 k p +1 − γ2 k p −1 ) , σ 2 
im 

= 3 N − 4 γ1 + 

(−1) k p (γ2 k p +1 − γ2 k p −1 ) , ρ = (−1) k p (γ2 k p +1 + γ2 k p −1 ) and 

k = sin 

(
π
2 N k 

)
. The derivation of asymptotic MSE expression 

s given in ( Appendix D ). The analytical complexity of the MSE 

xpression is due to the correlation of noise between neighboring 

FT bins due to 2 N-point DFT operation. 

. Numerical results 

We compare the performance of the suggested estimator with 

he state-of-the art estimators. The performance comparisons are 

onducted at challenging operational conditions of short data 

ecords ( N = 16 ) and large frequency separation from DFT bins i.e. 

ith an odd valued k p and a rather small δ due to the definition of 

 = 

2 π
2 N (k p + δ) . The signal phase φ is independently sampled from 

niform distribution in [0 , 2 π) at each Monte Carlo trial. This en- 

bles the utilization of HCRB as a performance bound. The Cramer- 

ao bound shown in the figures is calculated with the units of 

 N-DFT bins. Since k p + δ = ω 

2 N 
2 π , the product of 

√ 

ACRB given by 

4) and 

2 N 
2 π is the bound for the root mean square error (RMSE) 

ith the unit of 2 N-point DFT-bins. 

.1. Accuracy of iterative inversion 

Fig. 3 shows the accuracy of the inverse function mapping 

ethod. The unknown frequency is set as 3 + δ bins where δ takes 

alues in [ −0 . 5 , 0 . 5] . The Taylor series expansion point of the first

teration is taken as δ0 = 0 . 25 . From Fig. 3 , it is seen that 10 iter-

tions are sufficient to reach the numerical accuracy of the com- 

uting platform. In many cases, it suffices to have fewer iterations. 

or example, if the desired accuracy or the achievable accuracy at 

 given SNR is on the order of 1/100 of a DFT bin size, one can

hoose to terminate the scheme at the 6th iteration, given the in- 

ormation in Fig. 3 . 
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Fig. 3. Accuracy of the iterative inversion scheme for different number of iterations (noise-free operation). 
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2 YSA-N is the state-of-art estimator [29,30] . YSA-2N in Algorithm 2 listing is a 

simple modification of the original method to 2N-DFT points in the first stage which 
.2. Estimator RMSE 

Fig. 4 shows RMSE of the estimators for a length N = 16 input 

ith frequency k p + δ DFT bins, where k p = 3 and δ = −0 . 2 . It can

een from Fig. 4 that the method of Djukanovicàims [28] suffers 

rom an error floor due to the estimator bias at high SNR. Sug- 

ested method, method of Ye et al. [29] and ML estimator closely 

rack the CRB at a very small SNR gap. We have implemented two 

ersions of the method of Ye et al. [29] , denoted as YSA-N and

SA-2N. YSA-N (given in Ye et al. [29] ) uses N-point DFT in the

oarse localization stage, while YSA-2N (see Algorithm 2 listing) 

Algorithm 2: YSA-2N Method, ( [29,30] with 2N points). 

Input : r[ n ] : N samples of noisy real-valued sinusoid; 

Output : ̂ ω = 

2 π
N ( ̂

 k + ̂

 δ) rad./sample; 

1 R [ k ] = fft (r[ n ] , 2 N ) ( 2 N -point FFT calculation); 

2 ̂ m = arg max 
0 ≤k ≤N−1 

| R [ k ] | 2 (locate maxima in spectrum); 

3 
̂ k = 

̂ m / 2 ; 

4 Set ̂  δ = 0 and ̂

 a = 0 ; 

5 for iteration from 1 to Q , 

6 X p = 

1 
N 

∑ N−1 
n =0 x (n ) e − j 2 π

N 
( ̂ k + ̂  δ+ p) n , p = ±0 . 5 ; 

7 ̂ L p = 

̂ a ∗
N 

1+ e − j4 π̂ δ

1 −e 
− j 2 π

N 
(2 ̂ k +2 ̂ δ+ p) 

, and ̂

 S p = X p −̂ L p ; 

8 
̂ δ = ̂

 δ + 

1 
2 Re 

(̂ S 0 . 5 + ̂  S −0 . 5 ̂ S 0 . 5 −̂ S −0 . 5 

)
; 

9 ̂ a = 

1 
N 

(∑ N−1 
n =0 x (n ) e − j 2 π

N 
( ̂ k + ̂  δ) n −̂ a ∗ 1 −e j4 π

̂ δ

1 −e 
− j 4 π

N 
( ̂ k + ̂ δ) 

)
; 

10 end for 

11 Return 

̂ ω = 

2 π
N ( ̂

 k + ̂

 δ) . 
r

6 
ses 2 N-point DFT 2 . For all practical purposes, estimators except 

he one of Djukanovicàims act like ML estimator in the high SNR 

egion. The suggested method, YSA-2N and ML estimator perform 

lmost identically at all SNR values. 

.3. On fusion operation 

Fig. 5 studies the success of the fusion operation by comparing 

MSE of ̂ δre , 
̂ δim 

and 

̂ δF . The experiment parameters are N = 16 , 

 p = 3 , δ = −0 . 2 , SNR = 30 dB. Fig. 5 shows RMSE of the estimates

s phase φ varies in [0,180] degrees. In this experiment, the signal 

hase is taken as a non-random parameter to observe its impact on 

 

re and ̂

 δim 

. 

As noted earlier, depending on the value of ˜ φ = φ + πδ(1 −
1 
N ) − π

N k p , the input SNR of ˜ R re [ l] and 

˜ R im 

[ l] can vary signifi-

antly, affecting the accuracy of the frequency estimates. It is seen 

hat the suggested fusion rule, with the practical fusion coefficient 

iven by (16) , successfully combines both estimates so that the fi- 

al error is almost independent of the signal phase. In Fig. 5 , CRB

elation for finite N, given in [31, p. 56] , is utilized. We note that in

his experiment, all unknown parameters are non-random; hence, 

CRB is not applicable and ACRB is not accurate for N = 16 . 

.4. Computational complexity considerations 

Numerical results indicate that the performance of suggested 

nvariant function based method, method of Ye et al. [29] (with 

 N-point DFT in the first stage) and the maximum-likelihood 

ethod are almost identical for a wide range of SNR values. If 
esults in an even better performance. 



Ç. Candan and U. Çelebi Signal Processing 185 (2021) 108098 

-10 0 10 20 30 40 50

SNR (dB)

10-4

10-3

10-2

10-1

100

101

R
M

S
E

 (
in

 D
F

T
 b

in
s)

N = 16, kp = 3,  = -0.2

YSA-N
YSA-2N
Djukanovic
Proposed (Monte Carlo)
Proposed (Theoretical)
ML
ACRB or HCRB

0 5 10

10-1

29 29.5 30

Fig. 4. RMSE comparison of the proposed method with other methods. 

0 20 40 60 80 100 120 140 160 180

 (in degrees)

10-2

10-1

100

R
M

S
E

 (
in

 D
F

T
 B

in
s)

N=16, k
p
 = 3,  = -0.2, SNR = 30 dB

Fig. 5. Estimator accuracy comparison before and after fusion operation. 

7 



Ç. Candan and U. Çelebi Signal Processing 185 (2021) 108098 

Fig. 6. Comparison of estimators for N = 64 and SNR = 20 dB at different frequencies. 
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e compare the computational complexity of these three meth- 

ds, the maximum likelihood by grid-search requires calculation of 

ery high point DFT’s to attain the Cramer-Rao bound especially at 

igh SNR values. The method by Ye et al. (YSA-2N) requires 2 N- 

oint DFT in the first stage and 2 N complex multiplications per 

teration for the calculation of X p and 

̂ a given in the lines 6 and 9

f Algorithm 2 listing. Typically, 2 to 5 iterations are required un- 

il convergence, [29,30] . The suggested method requires a 2 N-point 

FT; evaluation of ratio re and ratio im 

(line 5 of Algorithm 1 listing) 

nd evaluation of inverse mapping on ratio re and ratio im 

(lines 6–

5 of Algorithm 1 listing). Hence, the computational load of the 

rst stage of both YSA-2N and the proposed method is identical. 

he proposed method incurs slightly less computation in the sec- 

nd stage due to the absence of a complex amplitude estimation 

tage present in YSA-2N method. The computational load differ- 

nce between YSA-2N and the proposed method diminishes for in- 

reasing N; since the total computational load will be dominated 

y the first stage. Note that, in case that f −1 (·) mapping can be

mplemented via a look-up table, the second stage of the proposed 

ethod is iteration-free and its computational load is null. 

.5. Cautionary remarks 

RMSE results similar to the one given in Fig. 4 can be ob- 

ained for different N, k p and δ values except for extremely low 

 k p ∈ { 0 , 1 } ) and high ( k p ∈ { N − 1 , N} ) frequencies. This is essen-

ially due to the special conditions on the DC and the maximum 

requency DFT bin. Simply put, the DC bin output is the sum of 

ll input samples which is purely real for the real-valued sinusoid 

roblem. Therefore, the imaginary part of this bin, or ratio im 

, is of 

o value for the estimation problem. (It can be observed that the 

ame is also true for the maximum frequency DFT bin.) 

Fig. 6 shows the frequency estimation RMSE of different meth- 

ds for N = 64 and SNR = 20 dB at various frequencies. As the
8 
nknown frequency approaches 0, all methods suffer performance 

osses due to the model mismatch at the DC bin, as previously 

iscussed. Note that ACRB is not capable of reflecting the perfor- 

ance losses due to its asymptotic definition. In Fig. 6 , we have 

lso included the non-asymptotic CRB to illustrate that the perfor- 

ance loss at low frequencies is indeed expected. (In Fig. 6 , we 

resent the CRB for the phase angle of φ = 5 ◦; but, the Monte 

arlo experiment is conducted with randomly selected phase an- 

les from uniform [0 , 2 π) distribution. The frequency estimation 

rror for the phase angles with a large deviation from ACRB, such 

s φ = 5 ◦, typically dominate the Monte Carlo results at low fre- 

uencies.) Hence, the extreme low and high frequency cases for 

he real-valued sinusoid frequency estimation problem should be 

reated individually. 

. Conclusions 

We describe an invariant function approach for the parameter 

stimation problem and apply the approach on the problem of fre- 

uency estimation of real-valued sinusoids observed under AWGN 

oise. The suggested approach results in a very low complexity 

stimator performing as well as the maximum likelihood estima- 

or in many scenarios. The suggested method can be either imple- 

ented via a look-up table resulting in a one-shot estimator or via 

uggested numerical method without any look-up table storage re- 

uirements. We invite readers to conduct additional Monte Carlo 

uns with the ready-to-use MATLAB implementation of the sug- 

ested method in Candan and Celebi [35] . We think that the sug- 

ested invariant function approach can be utilized in other param- 

ter estimation problems and can be a computationally efficient 

lternative to the grid-search based or numerical-search based ML 

stimators. 
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ppendix A. Maximum likelihood estimator 

The maximum likelihood estimator for the frequency ω is given 

n Kay [31 , Eq. (7.65)] and [3] . We present a compact expression in

erms of the discrete time Fourier transform (DTFT) of the input. 

The maximum likelihood expression can be written as 

rg max ω || P ω r || 2 where P ω is the projection matrix to sub- 

pace spanned by c c c = [1 cos (ω ) . . . cos (ω (N − 1))] T and s s s = 

0 sin (ω) . . . sin (ω(N − 1))] T , see [31, Eq. (7.65)] for more details. 

o get an analytical expression for the projection operation, we de- 

ne ̂  s = s u + c u and ̂

 c = s u − c u where s u = s / || s || , c u = c / || c || . The

ectors ̂  s and ̂

 c are orthogonal vectors in the span of s s s and c c c . By 

ormalizing ̂  s and ̂

 c to unit norm; we get an orthonormal set of 

asis vectors for the span of s s s and c c c . Hence, the maximum likeli- 

ood expression can be written as: 

 

 = arg max 
ω 

|| P ω r || 2 

= arg max 
ω 

( ̂  s T r ) 2 

|| ̂  s || 2 + 

( ̂  c T r ) 2 

|| ̂  c || 2 (A.1) 

= arg max 
ω 

[
( s T u r + c T u r ) 

2 

2(1 + s T u c u ) 
+ 

( s T u r − c T u r ) 
2 

2(1 − s T u c u ) 

]
, (A.2) 

here || ̂  s || 2 = 2(1 + s T u c u ) and || ̂  c || 2 = 2(1 − s T u c u ) . By adding two

erms forming the argument of arg max in (A.2) and substituting 

 u = s / || s || and c u = c / || c || ; we get 

 

 = arg max ω 
( s T r ) 2 || c || 2 +( c T r ) 2 || s || 2 −2( s T r )( c T r )( s T c ) 

|| s || 2 || c || 2 −( s T c ) 2 
. (A.3) 

ext, we derive the expressions for || c || 2 , || s || 2 and s T c by observ-

ng that 

 + jX = 

N−1 ∑ 

n =0 

e j2 ωn = 

N−1 ∑ 

n =0 

cos (2 ωn ) + j sin (2 ωn ) 

= e jω(N−1) sin (ωN) 

sin (ω) 
(A.4) 

nd R = 

∑ N−1 
n =0 ( cos 2 (ωn ) − sin 

2 (ωn )) = || c || 2 − || s || 2 and X =
 

∑ N−1 
n =0 sin (ωn ) cos (ωn ) = s T c . Also noting that || c || 2 + || s || 2 = N,

e get || c || 2 = (N + R ) / 2 , || s || 2 = (N − R ) / 2 and s T c = X/ 2 . By sub-

tituting these expressions in (A.3) , the ML expression becomes 

 

 = arg max 
ω 

2( s T r ) 2 (N + R ) + 2( c T r ) 2 (N − R ) − 4 X( s T r )( c T r ) 

N 

2 − R 2 − X 2 

= arg max 
ω 

2 N(( s T r ) 2 + ( c T r ) 2 ) + 2 R (( s T r ) 2 − ( c T r ) 2 ) − 4 X( s T r )( c T r ) 

N 

2 − (R 2 + X 2 ) 

= arg max 
ω 

2 N| R (e jω ) | 2 + 2 Re { R 2 (e jω )(R + jX ) } 
N 

2 − (R 2 + X 2 ) 
(A.5) 

here R (e jω ) is the discrete-time Fourier transform (DTFT) of r[ n ]

hich is R (e jω ) = ( s T r ) + j( c T r ) . Substituting the expression for

 + jX and its magnitude square ( R 2 + X 2 ) from (A.4) into the last

xpression, we finalize the derivation of the ML estimator: 

 

 = arg max 
ω 

| R (e jω ) | 2 + 

sin (ωN) 
N sin (ω) 

Re { R 

2 (e jω ) e jω(N−1) } 
N − sin 2 (ωN) 

. 
N sin 2 (ω) a

9 
ppendix B. Independence of ̂ δre and 

̂ δim 

The mean values of ˜ R re [ l] = Re { ̃  R [ l] } and 

˜ R im 

[ l] = Im { ̃  R [ l] } , with
 

 [ l] definition given in (7) , have no effect on the statistical proper-

ies of these random variables. We take the mean value (the signal 

omponent) of the random variables as zero to simplify the deriva- 

ion and define 

 l = αk p + l 
N−1 ∑ 

n =0 

e −
j2 π(k p + l) n 

2 N w [ n ] (B.1) 

here l = k − k p , α = e 
jπ(N−1) 

2 N . S l is identical to ˜ R [ l] , given in (7) , in

he absence of signal term. To determine the statistical properties 

f ˜ R re [ l] and 

˜ R im 

[ l] , we first examine the auto-correlation of the 

andom variables: 

{ S l 1 S ∗l 2 } = αl 1 −l 2 E 

{ ( 

N−1 ∑ 

n 1 =0 

e −
j2 π(k p + l 1 ) n 1 

2 N w [ n 1 ] 

) ( 

N−1 ∑ 

n 2 =0 

e 
j2 π(k p + l 2 ) n 2 

2 N w 

∗[ n 2 ] 

) } 

(a ) = σ 2 
w α

l 1 −l 2 

N−1 ∑ 

n =0 

e 
j2 π(l 2 −l 1 ) n 

2 N 

= σ 2 
w α

l 1 −l 2 
1 − e 

j2 π(l 2 −l 1 ) 

2 

1 − e 
j2 π(l 2 −l 1 ) 

2 N 

= σ 2 
w α

l 1 −l 2 e − j π2 N (l 2 −l 1 )(N−1) 
sin 

(
π
2 
(l 2 − l 1 ) 

)
sin 

(
π
2 N 

(l 2 − l 1 ) 
)

= σ 2 
w 

sin 
(

π
2 
(l 2 − l 1 ) 

)
sin 

(
π
2 N 

(l 2 − l 1 ) 
) � σ 2 

w d(l 2 − l 1 ) (B.2) 

here the function d(x ) = sin 

(
π
2 x 

)
/ sin 

(
π
2 N x 

)
is introduced in the 

ast line of (B.2) . 

By following the steps of (B.2) almost verbatim, it is also pos- 

ible to show that E{ S l 1 S l 2 } = σ 2 
w 

d(2 k p + l 1 + l 2 ) . A rather surpris-

ng results is that after the phase multiplication in the step 3 of 

lgorithm 1 listing, both E{ S l 1 S ∗l 2 } and E{ S l 1 S l 2 } becomes a real-

alued function. 

The covariance of ˜ R re [ l 1 ] and 

˜ R re [ l 2 ] can be written as 

{ ̃  R re [ l 1 ] ̃  R re [ l 2 ] } = E{ Re { S l 1 } Re { S l 2 }} (B.3) 

= 

1 

4 

E{ (S l 1 + S ∗l 1 )(S l 2 + S ∗l 2 ) } 
= 

1 

2 

Re { E{ (S l 1 + S ∗l 1 ) S l 2 }} 

= 

σ 2 
w 

2 

[ d(2 k p + l 1 + l 2 ) + d(l 1 − l 2 )] . 

ote that when l 1 − l 2 is a non-zero even number, E{ ̃  R re [ l 1 ] ̃
 R re [ l 2 ] }

educes to zero as expected. Following similar lines of deriva- 

ions, we can also get E{ ̃  R im 

[ l 1 ] ̃
 R im 

[ l 2 ] } = 

σ 2 
w 
2 [ −d(2 k p + l 1 + l 2 ) +

(l 1 − l 2 )] . 

The covariance of ̃  R re [ l 1 ] and ̃

 R im 

[ l 2 ] can also be established as 

{ ̃  R re [ l 1 ] ̃  R im 

[ l 2 ] } = 

1 

4 j 
E{ (S l 1 + S ∗l 1 )(S l 2 − S ∗l 2 ) } 

= 

1 

2 

Im { E{ (S l 1 + S ∗l 1 ) S l 2 }} = 0 . (B.4) 

ence, the real and imaginary parts of ˜ R [ l] are uncorrelated for all 

. Since these variables are jointly Gaussian distributed, the uncor- 

elatedness implies independence. Once the independence of ˜ R re [ l] 

nd 

˜ R im 

[ l] are established, the fine frequency estimates ( ̂  δre and 

 

im 

), which are derived from real and imaginary parts of ˜ R [ l] , are

lso independent random variables. 
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ppendix C. On fusion coefficient calculation 

The suggested fusion coefficient is given as α � 

˜ R 2 re [0] ˜ R 2 re [0]+ ̃  R 2 
im 

[0] 
= 

1 + 

(˜ R im 

[0] ˜ R re [0] 

)2 
)−1 

. Here we provide the details on the ratio 

 

 im 

[0] / ̃  R re [0] generating the fusion coefficient. Below, it is shown 

hat ˜ R im 

[0] ˜ R re [0] 
= tan ( ̃  φ) 

[
tan 

(
πk p 

2 N 

)
cot 

(
π(k p + δ) 

2 N 

)]p 

︸ ︷︷ ︸ 
≈1 

≈ tan ( ̃  φ) , 

(C.1) 

here p = (−1) ̂
 k p is the parity of ̂  k p , taking the value of 1 or −1

epending on ̂

 k p being an even or odd integer. 

By substituting the definitions for ˜ R re [0] and 

˜ R im 

[0] from 

8) into 
˜ R im 

[0] ˜ R re [0] 
, we get 

˜ R im 

[0] ˜ R re [0] 
= tan ( ̃  φ) 

sin ( B 
N 
) sin (A ) − sin ( A 

N 
) sin (B ) 

sin ( B 
N 
) sin (A ) + sin ( A 

N 
) sin (B ) 

(C.2) 

ith A = 

π
2 δ and B = 

π
2 (2 k p + δ) . We note that sin (B ) =

in (πk p + 

π
2 δ) = (−1) k p sin (A ) . Upon the substitution of 

in (B ) = (−1) k p sin (A ) , into (C.2) , we get: ˜ R im 

[0] ˜ R re [0] 
cot ( ̃  φ) = 

sin ( B 
N 
) − (−1) k p sin ( A 

N 
) 

sin ( B 
N 
) + (−1) k p sin ( A 

N 
) 
. (C.3) 

ssuming, for now, k p is an even number, (C.3) reduces to ˜ R im 

[0] ˜ R re [0] 
cot ( ̃  φ) = 

sin ( B 
N 
) − sin ( A 

N 
) 

sin ( B 
N 
) + sin ( A 

N 
) 

= 

sin ( B −A 
2 N 

) cos ( B + A 
2 N 

) 

sin ( B + A 
2 N 

) cos ( B −A 
2 N 

) 

= tan 

(
B − A 

2 N 

)
cot 

(
B + A 

2 N 

)
. (C.4) 

nserting B −A 
2 N = 

πk p 
2 N and 

B + A 
2 N = 

π(k p + δ) 
2 N into (C.4) , results in ˜ R im 

[0] ˜ R re [0] 
= tan ( ̃  φ) tan 

(
πk p 

2 N 

)
cot 

(
π(k p + δ) 

2 N 

)
. (C.5) 

hen k p is an odd number, the numerator of the ratio on the 

ight side of (C.3) is swapped with its the denominator and we 

ave 
˜ R im 

[0] ˜ R re [0] 
= tan ( ̃  φ) 

[ 
tan 

(
πk p 
2 N 

)
cot 

(
π(k p + δ) 

2 N 

)] −1 

. Both cases can 

e summarized as in (C.1) . 

ppendix D. Derivation of asymptotic MSE expression 

To derive the asymptotic MSE expression, we assume that 

oise variance σ 2 
w 

is sufficiently low such that ratio re given in 

9) can be approximated as ratio re ≈ f re (δ) + ( equivalent-noise ) . 

ere the term ( equivalent-noise ) denotes the equivalent additive 

oise formed by ignoring noise-cross-noise terms, with the low 

oise variance (high SNR) assumption. 

In the absence of noise, we have ratio re is f re (δ) � ratio re = ˜ R re [1] −˜ R re [ −1] 

2 ̃  R re [0] −˜ R re [1] −˜ R re [ −1] 
= A re /B re where we have assumed δ − δ0 ≈ 0 in 

12) , i.e. the iterative inversion scheme is executed until conver- 

ence. In the presence of noise, ratio re becomes 

atio re = 

A cos ( ̃  φ) 
2 

A re + w 

re 
num 

A cos ( ̃  φ) 
2 

B re + w 

re 
denum 

, (D.1) 

here w 

re 
num 

= Re { S 1 } − Re { S −1 } and w 

re 
denum 

= 2 Re { S 0 } − Re { S 1 } −
e { S −1 } . Here, we use the random variable S l defined in 

 Appendix B ). It is clear that w 

re 
num 

and w 

re 
denum 

are jointly Gaus-

ian distributed zero-mean random variables. Using the results of 
10 
 Appendix B ), we can express the marginal distributions as w 

re 
num 

∼
 (0 , Nσ 2 

w 

) and 

 

re 
denum 

∼ N 

( 

0 , σ 2 
w 

[ 

3 N − 4 

sin ( π
2 N 

) 
− 2(−1) k p 

( 

1 

sin ( 
π(2 k p +1) 

2 N 
) 

− 1 

sin ( 
π(2 k p −1) 

2 N 
) 

) ] ) 

. 

nd the cross-correlation of w 

re 
num 

and w 

re 
denum 

as 

{ w 

re 
num 

w 

re 
denum 

} = σ 2 
w 

(−1) k p 

( 

1 

sin ( 
π(2 k p +1) 

2 N 
) 

+ 

1 

sin ( 
π(2 k p −1) 

2 N 
) 

) 

. 

o get the equivalent noise term, we express ratio re as 

atio re = 

A re 

B re 
+ 

w 

re 
num 

A cos ( ̃ φ) 
2 B re 

1 + 

w 

re 
denum 

A cos ( ̃ φ) 
2 B re 

= 

A re 

B re 
+ ̃

 w 

re 
num 

1 + ̃

 w 

re 
denum 

1 − ˜ w 

re 
denum 

1 − ˜ w 

re 
denum 

≈ A re 

B re 
+ ̃

 w 

re 
num 

− A re 

B re ̃

 w 

re 
denum 

, 

here ˜ w 

re 
num 

= 2 w 

re 
num 

/ (A cos ( ̃  φ) B re ) and 

˜ w 

re 
denum 

= 

 w 

re 
denum 

/ (A cos ( ̃  φ) B re ) and w 

re 
num 

− A re 
B re 

is the equivalent noise 

erm which is formed by ignoring second powers of noise at the 

umerator and denominator of the ratio in (D.2). 

The arguments given above when repeated almost verbatim for 

he ratio im 

constructed from the imaginary part of ˜ R [ l] (step 4 of 

lgorithm 1 ), we get the ratio im 

≈ A im 

B im 

+ ̃

 w 

im 

num 

− A im 

B im ̃

 w 

im 

denum 

where 

 im 

, B im 

and 

˜ w 

im 

num 

, ̃  w 

im 

denum 

are similarly defined. 

Following (14) , the asymtotic mean squared error expres- 

ions for ̂ δre and 

̂ δim 

can be written as c 2 N re 
( var ( ̃  w 

re 
num 

) + 

A 2 re 

B 2 re 
var ( ̃  w 

re 
denum 

) − 2 A re 
B re 

E{ ̃  w 

re 
num ̃

 w 

re 
denum 

} ) and c 2 
N im 

( var ( ̃  w 

im 

num 

) + 

A 2 
im 

B 2 
im 

var ( ̃  w 

im 

denum 

) − 2 
A im 

B im 

E{ ̃  w 

im 

num ̃

 w 

im 

denum 

} ) respectively where 

 N re 
= 

B 2 re 
˙ A re B re −A re ̇ B re 

and c N im 

= 

B 2 
im 

˙ A im 

B im 

−A im 

˙ B im 

. 

With the fusion rule of ̂ δF = cos 2 ( ̃  φ) ̂  δre + sin 

2 ( ̃  φ) ̂  δim 

(see 

ppendix C ), the asymptotic MSE becomes 

[(δ −̂ δF ) 
2 ] = 

2[ E { cos 2 ( ̃  φ) } f 1 + E { sin 

2 ( ̃  φ) } f 2 ] 
SNR 

= 

f re + f im 

SNR 

here f re = 

NB 2 re −2 A re B re ρ+ σ 2 
re A 

2 
re 

( ̇ A re B re −A re ̇ B re ) 2 
, f im 

= 

NB 2 
im 

+2 A im 

B im 

ρ+ σ 2 
im 

A 2 
im 

( ̇ A im 

B im 

−A im 

˙ B im 

) 2 
, γk = 

in 

(
π
2 N k 

)
, σ 2 

re = 3 N − 4 γ1 − 2(−1) k p (γ2 k p +1 − γ2 k p −1 ) , σ 2 
im 

= 

 N − 4 γ1 + 2(−1) k p (γ2 k p +1 − γ2 k p −1 ) , ρ = (−1) k p (γ2 k p +1 + γ2 k p −1 ) . 

An inspection of f re and f im 

reveals that the numerator and de- 

ominator of both ratios increase with N 

3 and N 

4 as N → ∞ , re-

pectively. Hence, as N → ∞ , that is the asymptotic MSE = 

f re + f im 
SNR 

ends to γ / ( SNR × N) (with the units of DFT-bin 

2 ) where the fac- 

or γ is a scenario specific parameter, with a dependency on δ that 

etermines the constant gap of the estimator from the ACRB in the 

igh SNR region. 
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