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a b s t r a c t 

Maximum likelihood autoregressive (AR) model parameter estimation problem with independent snap- 

shots observed under white Gaussian measurement noise is studied. In addition to the AR model param- 

eters, the measurement noise variance is also included among the unknowns of the problem to develop a 

general solution covering several special cases such as the case of known noise variance, noise-free snap- 

shots, the single snapshot operation etc. The presented solution is based on the expectation-maximization 

method which is formulated by assigning the noise-free snapshots as the missing data. An approximate 

version of the suggested method, at a significantly reduced computational load with virtually no loss 

of performance, has also been developed. Numerical results indicate that the suggested solution brings 

major performance improvements in terms of estimation accuracy and does not suffer from unstable AR 

filter estimates unlike some other methods in the literature. The suggested method can be especially 

useful for small-dimensional multiple-snapshot noisy AR modeling applications such as the clutter power 

spectrum modeling application in radar signal processing. 

© 2021 Elsevier B.V. All rights reserved. 
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. Introduction 

Autoregressive (AR) modeling of random signals is being used 

n many areas associated with the statistical signal processing 

1] such as radar signal processing, speech processing and biomed- 

cal signal processing [2–5] . The richness of application venues for 

R models can be attributed to their success in representation and 

lso to the availability of efficient methods for model parameter 

stimation. In this work, we consider the parameter estimation of 

R processes observed under white noise. Our main goal is to ex- 

end the maximum-likelihood like AR model parameter estimator 

eveloped for a single noise-free snapshot in Candan [6] to the op- 

ration with multiple snapshots corrupted by white noise. A com- 

utationally efficient version of the suggested method is also pre- 

ented. 

Model parameter estimation of an AR process observed under 

oise (noisy AR parameter estimation problem) is prone to esti- 

ator bias and statistical efficiency problems when modeling as- 

umptions are not carefully taken into account. For example, AR 

arameter estimates obtained from Yule–Walker (YW) equations 

re typically biased due to the bias of the zero-lag term of the 

utocorrelation introduced by white noise [7] . Furthermore, when 
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he variance of the noise corrupting the AR process is not known, 

n asymptotic Cramér–Rao bound (CRB) study by Weruaga et al. 

eveals that the joint estimation of the autoregressive signal vari- 

nce and noise variance is not a well-conditioned problem [8,9] . 

n spite of these setbacks, several practical solutions have been 

eveloped for the noisy AR parameter estimation problem in the 

iterature. For example, since the autoregressive moving average 

ARMA) model also characterizes the noisy AR processes, it is pos- 

ible to apply ARMA modeling approaches such as the maximum 

ikelihood [10] , the modified YW [11] or the recursive prediction 

rror [12] for the solution of noisy AR parameter estimation prob- 

em. In addition, a number of improved least-squares (LS) solu- 

ions are suggested to compensate the bias on the parameter esti- 

ates due to the measurement noise [13–15] . The main challenge 

or the bias compensating solutions is the estimation of the mea- 

urement noise variance. The solutions based on the eigendecom- 

osition [14] and the inverse filtering coupled with YW equations 

15] have been suggested for this purpose. Among other solutions, 

e can list a subspace based solution [16] , an errors-in-variables 

pproach utilizing both low and high order YW equations [17] , 

 nonlinear optimization (for the estimation measurement noise 

ariance) solution [18] , a solution with two interacting Kalman fil- 

ers [19] and some adaptive filtering type solutions [20–22] . A par- 

icularly interesting solution is the method presented in Gabrea 

t al. [23] , based on the approach developed by Mehra [24] , that

voids the estimation of the process and measurement noise vari- 
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Fig. 1. AR process samples x [ n ] corrupted by the observation noise v [ n ] to form the 

observed sequence y [ n ] . 
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nces. Recently, four novel methods have been proposed in Esfan- 

iari et al. [25] . The first one utilizes the null space of AR param-

ter vector, the second one solves a constrained LS problem, the 

hird one reduces the parameter estimation problem for an AR( P ) 

rocess to a problem of estimating two parameters and the fourth 

ne is based on the eigendecomposition of enlarged autocorrela- 

ion matrix. 

The main aim of this work is to study the noisy AR parameter 

stimation problem in the presence of multiple independent snap- 

hots. We solely focus on the parameter estimation problem for 

he scalar AR processes, that is the vector-AR processes, in which 

he regression (recursion) involves a linear combination previous 

ector-outputs and current input-vector [26] , are not within the 

cope of this study. We apply the expectation-maximization (EM) 

ethod [27] by assigning the noise-free snapshots as the missing 

ata to develop a solution. In the maximization step (M-step) of 

M method, we transform the AR parameter estimation problem 

nto a form that can be solved by using an approach similar to the 

ecent work in Candan [6] which is a two-stage method utilized 

or AR parameter estimation for a single noise-free snapshot. For 

he calculation of the expectation step (E-step), we describe an ap- 

roximate, yet highly efficient, method for the computational load 

eduction. 

The EM method has been previously applied for the solution 

f noisy AR parameter in Deriche [28] and some computational 

implifications in the M-step have been suggested. Different from 

28] , we formulate the M-step such that it is possible to extend 

he maximum likelihood like estimator given in Candan [6] to the 

ultiple snapshot setting and also describe some novel computa- 

ional load reduction methods for the E-step. In [29] , a related EM- 

ased method utilizing Kalman filters is presented for the colored 

aussian noise. It is well known that the performance of EM al- 

orithm is sensitive to the initialization, that is EM iterations can 

onverge to a local maximum, instead of the global maximum, due 

o a poor initialization [30] . In this study, we present an initializa- 

ion method for the suggested method (see Appendix A ), consider 

he cases of known/unknown measurement noise variance individ- 

ally and present detailed comparisons with the alternative esti- 

ators and CRBs derived in Weruaga and Melko [8] , Weruaga and 

imitrov [9] . 

In the literature, there are several works, including [31–33] , 

hich are based on the Whittle likelihood [34] , a frequency- 

omain approximation to the exact likelihood function. While 

hittle likelihood maximization is computationally easier, the re- 

ulting parameter estimates with finite sample sizes are biased es- 

ecially for short data records [33] . As the sample size increases, 

ime- and frequency-domain solutions yield similar results [35] . 

urther discussions on time- and frequency-domain approaches 

an be found in Weruaga and Dimitrov [9] . In this study, we fo-

us on time-domain approach in relation with our main goal of 

xtending the maximum likelihood like estimator in Candan [6] to 

he noisy, multiple snapshot setting. 

The AR modeling has several important applications in speech 

rocessing area. In this area, the typical data size can be hun- 

reds of samples and frequency domain methods can be utilized 

n this large sample-size regime without any performance worries. 

n some other applications, such as the radar signal processing ap- 

lications, the data size can be much smaller and data collection 

echanism can operate intermittently, in contrast to the continu- 

us data-collection modality in speech processing, leading to mul- 

iple, short data-length (snapshot) observations [36–38] . For exam- 

le, in the clutter (the unwanted echoes received by radar systems 

36] ) cancellation application of radar signal processing, the clut- 

er power spectral density is estimated from a collection of snap- 

hots [36] . Each entry of the snapshot vector is formed by a radar

ulse return from a particular range cell. The number of trans- 
2 
itted pulses, which is the dimension of the snapshot vector, af- 

ects all subsequent radar operations and it can be as few as 10- 

0 pulses due to other constraints [39] . For this application, the 

tructured estimation of the clutter power spectrum from small di- 

ensional multiple snapshots becomes a necessity. Some solutions 

o this problem, in addition to the examined maximum likelihood 

olution, are the multiple-snapshot version of the Burg’s method 

37] or the multiple-snapshot version of any other AR parameter 

stimation method given in Stoica and Moses [40] . In this study, 

e consider the AR parameter estimation problem specifically for 

mall-dimensional multiple snapshots and pursue an exact time- 

omain maximum likelihood parameter estimation solution. 

The main contributions of the study are as follows: 1. Express- 

ng the conventional EM formulation as a multiple-snapshot, noise- 

ree AR parameter estimation problem ( Section 2.1 ); 2. Extension 

f efficient single snapshot noise-free AR parameter estimation 

iven in Candan [6] to the multiple-snapshot case and its appli- 

ation in the solution of EM problem ( Section 2.2 ); 3. An approx- 

mate, but efficient version of the proposed solution by utilizing 

 matrix inversion free Kalman smoother [41, Sec. 5.2.4] and the 

ohberg-Semencul formula [40, Sec. 3.9.4] ( Section 2.3 ). 

The notation utilized in this paper is as follows: Scalars, column 

ectors and matrices are denoted by italic lowercase, boldface low- 

rcase and boldface uppercase letters, respectively. The conjugate, 

ranspose, conjugate transpose and inverse operators are denoted 

y (·) ∗, (·) T , (·) H and (·) −1 , respectively. The density of the zero-

ean complex-valued (circular symmetric) white Gaussian noise 

ith variance σ 2 is denoted by CN (0 , σ 2 ) . I N denotes the N × N

dentity matrix and j = 

√ −1 . 0 N and 0 N×N denote the N dimen- 

ional column vector and the N × N matrix, respectively, with all 

ntries being zero. Euclidean norm and trace are denoted by ‖ · ‖ 
nd tr (·) , respectively. For a scalar c, | c| is the absolute value of c.

or a square matrix S , | S | is the determinant of S . The n ’th en-

ry of the vectors x and x � are denoted as x n and x �,n , respec-

ively. For a positive integer P, x �,n : n + P = [ x �,n x �,n +1 . . . x �,n + P ] T 

nd x �,n : −1: n −P = [ x �,n x �,n −1 . . . x �,n −P ] 
T . The i ’th row and j’th col-

mn entry of matrix M is denoted as [ M ] i j . 

. Noisy AR parameter estimation problem 

Consider the transfer function, given below, for the generation 

f AR( P ) process 

(z) = 

σε

1 + a 1 z −1 + a 2 z −2 + . . . + a P z −P 
= 

σε

A ( z) 
, (1) 

here a 1 , a 2 , . . . , a P can be either the real- or complex-valued con-

tants, and σε is a real-valued constant scaling the input. 

The filter H(z) is assumed to be excited with zero-mean, 

nit variance complex-valued (circular symmetric) white Gaussian 

oise as shown in Fig. 1 . The filter H(z) is assumed to be stable so

hat x [ n ] in Fig. 1 is a wide-sense stationary process. The output

f the filter at steady-state is denoted as x [ n ] . The l’th snapshot

ector x l with dimension N × 1 is formed by concatenating con- 

ecutive x [ n ] samples. It is assumed that a total number of L snap-

hot vectors are collected where each snapshot is independent and 

dentically distributed (iid) Gaussian vector. 

The autocorrelation matrix of the snapshot x l is denoted as 

 = R f,N σ
2 
ε where R f,N is an N × N Hermitian Toeplitz matrix 
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hose first column entries are r f [ k ] = E{ x [ n ] x ∗[ n − k ] } /σ 2 
ε for k =

 0 , 1 , . . . , N − 1 } : 

 f,N = 

⎡ ⎢ ⎢ ⎣ 

r f [0] r f [ −1] . . . r f [ −N + 1] 
r f [1] r f [0] . . . r f [ −N + 2] 

. . . 
. . . 

. . . 
. . . 

r f [ N − 1] r f [ N − 2] . . . r f [0] 

⎤ ⎥ ⎥ ⎦ 

. (2) 

n this study, it is assumed that snapshot vectors are observed un- 

er independent additive white Gaussian noise, i.e., the l’th ob- 

ervation vector is y l = x l + v l as in Fig. 1 , where v l vectors are

n iid circular symmetric Gaussian distributed vector with zero- 

ean and covariance matrix σ 2 
v I N . Hence, the sample signal-to- 

oise ratio is SNR = σ 2 
ε r f [0] /σ 2 

v . The general AR parameter esti- 

ation problem is the estimation of � = { σ 2 
v , σ

2 
ε , a } , where a =

 a 1 a 2 . . . a P ] 
T , given the observation vectors y l , l = { 1 , 2 , . . . , L } . If

he noise variance σ 2 
v is known, the unknown parameter set re- 

uces to � = { σ 2 
ε , a } . For this case, the true value for the noise

ariance can be substituted for its estimate in the formulation 

iven below. If the noise variance is known to be zero, the problem 

ecomes AR parameter estimation with multiple noise-free snap- 

hots. The solution of this problem can be retrieved as the limiting 

ase of the discussion as σ 2 
v → 0 . 

.1. EM formulation for noisy AR parameter estimation with multiple 

napshots 

For the solution of the problem, we apply the expectation- 
aximization method. To do that, we define N × L matrices X = 

 x 1 . . . x L ] , Y = [ y 1 . . . y L ] to denote the noise-free AR process snap-
hots and observations, respectively. The snapshot matrix X is the 
atent variable of the problem. The N × 2 L dimensional Z = [ X Y ]
s the complete data matrix. The log-likelihood of complete data 

atrix �(Z , �) = log f (X , Y ) = log f (Y | X ) + log f (X ) can be writ-
en as 

(Z , �) 
c = −

L ∑ 

l=1 

{ 

N log (σ 2 
v ) + 

‖ y l − x l ‖ 2 
σ 2 

v 
+ log (| σ 2 

ε R f,N | ) + 

x H 
l 

R 

−1 
f,N 

x l 

σ 2 
ε

} 

, 

(3) 

where first two and last two terms of summation correspond to 

he terms log f (Y | X ) and log f (X ) , respectively. The symbol 
c = de-

otes the equality of both sides apart from constant terms. 

The EM method has two steps: In the expectation step, the 

xpected value of complete log-likelihood is calculated with re- 

pect to the posterior density of the latent variables. The expecta- 

ion operation can be written as J(�) = E{ �(Z , �) | Y , �old } . Here
old = { (σ 2 

v ) 
old , (σ 2 

ε ) old , a old } are the current estimates for the

nknown parameters to be updated. In the second step, the expec- 

ation result is maximized with respect to the unknown parame- 

ers, �new = argmax � J(�) , to update the unknown parameters. 

he algorithm is initiated with a proper �old value for the im- 

lementation of the first step (posterior calculation) and iteratively 

un by using �new of an earlier iteration as the �old of the next 

teration until the convergence of the estimates. 

To execute the expectation step, we need the posterior density 

f latent variables, f (x l | y l ) , l = { 1 , 2 , . . . , L } . It is well known that

he posterior density f (x l | y l ) is the Gaussian vector with mean 

ector ̂  x l and covariance matrix K given as 

 

 l = (σ 2 
ε ) old R f,N (a old )((σ 2 

ε ) old R f,N (a old ) + (σ 2 
v ) 

old I N ) 
−1 y l , 

K = (σ 2 
ε ) old R f,N (a old ) − (σ 4 

ε ) old R f,N (a old ) 
(
(σ 2 

ε ) old R f,N (a old )

+(σ 2 
v ) 

old I N 

)−1 

R f,N (a old ) . (4)
3 
aking the expectation of the complete log-likelihood function 

n (3) with respect to the posterior density results in J(�) = 

{ �(Z , �) | Y , �old } 

(σ 2 
v , σ

2 
ε , a ) 

c = −
L ∑ 

l=1 

{
N log (σ 2 

v ) + 

‖ y l −̂ x l ‖ 

2 + tr (K ) 

σ 2 
v 

+ log (| σ 2 
ε R f,N | ) + ̂

 x 

H 
l 

R 

−1 
f,N ̂

 x l + tr (R 

−1 
f,N 

K ) 

σ 2 
ε

} 

, (5) 

hich completes the first step (expectation step) of EM method. 

The maximization step of EM starts with the partial derivative 

alculation of J(σ 2 
v , σ

2 
ε , a ) , given in (5) , with respect to σ 2 

v . Setting

he result equal to zero, we get the update expression for the mea- 

urement noise variance σ 2 
v estimate 

σ 2 
v ) 

new = 

L tr (K ) + 

∑ L 
l=1 ‖ y l −̂ x l ‖ 

2 

LN 

. (6) 

imilarly, by taking the partial derivative of J(σ 2 
v , σ

2 
ε , a ) with re- 

pect to σ 2 
ε and equating the result to zero, we get the update ex- 

ression for the process noise variance σ 2 
ε estimate 

σ 2 
ε ) new = 

L tr (R 

−1 
f,N 

K ) + 

∑ L 
l=1 ̂

 x 

H 
l 

R 

−1 
f,N ̂

 x l 

LN 

. (7) 

ubstituting (σ 2 
v ) 

new and (σ 2 
ε ) new given in (6) and (7) , respec- 

ively, into (5) , we get the compressed expected log-likelihood 

unction as 

((σ 2 
v ) 

new , (σ 2 
ε ) new , a ) 

c = − log | R f,N | 

−N log 

( 

L tr (R 

−1 
f,N 

K ) + 

L ∑ 

l=1 ̂

 x 

H 
l R 

−1 
f,N ̂

 x l 

) 

, (8) 

here R f,N is a function of unknown parameter vector a = 

 a 1 a 2 . . . a P ] 
T . The maximization of (8) with respect to a is more

hallenging than earlier steps and is the main challenge of the 

roblem. Fortunately, by expressing L tr (R 

−1 
f,N 

K ) as a quadratic term, 

he function (8) can be converted into a form similar to that of sin-

le noise-free snapshot case given in Candan [6] and the approach 

iven therein can be utilized to maximize (8) with respect to a . 

To express L tr (R 

−1 
f,N 

K ) as a quadratic term, we introduce the 

igendecomposition of covariance matrix K = 

∑ N 
n =1 λn e n e 

H 
n into 

he problem. Here λn and e n is an eigenvalue and associated unit 

orm eigenvector of matrix K . It should be noted that we can 

nd an orthonormal set of the eigenvectors e n , since the ma- 

rix K is Hermitian. With the eigendecomposition, it is possible 

o express tr (R 

−1 
f,N 

K ) as tr (R 

−1 
f,N 

K ) = 

∑ N 
n =1 λn e 

H 
n R 

−1 
f,N 

e n . By introduc-

ng the scaled versions of eigenvectors e n as ē n = 

√ 

Lλn e n , we can 

urther simplify this expression to L tr (R 

−1 
f,N 

K ) = 

∑ N 
n =1 ̄e 

H 
n R 

−1 
f,N ̄

e n . 

ence, the maximization of compressed likelihood relation in (8) is 

quivalent to the following minimization problem 

 

new = argmin 

a 

1 

N 

log | R f,N | + log 

( 

N ∑ 

n =1 

ē H n R 

−1 
f,N ̄

e n + 

L ∑ 

l=1 ̂

 x 

H 
l R 

−1 
f,N ̂

 x l 

) 

= argmin 

a 

1 

N 

log | R f,N | + log 

( 

L a = L + N ∑ 

� =1 

f H � R 

−1 
f,N 

(a ) f � 

) 

. (9) 

n the second line of (9) , we combine the sums in the argument of

ogarithm by augmenting the set of ̂  x l vectors l = { 1 , 2 , . . . , L } with

¯
 n vectors n = { 1 , 2 , . . . , N} to form a set of vectors with L a = L + N

lements where f L + n = ē n . 

Assuming that the solution of optimization problem in (9) , that 

s a new , is available; the remaining unknown parameter can be 
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stimated from (7) as 

σ 2 
ε ) new = 

L tr (R 

−1 
f,N 

(a new ) K ) + 

∑ L 
l=1 ̂

 x 

H 
l 

R 

−1 
f,N 

(a new ) ̂  x l 

LN 

= 

∑ L a 
� =1 f 

H 
� R 

−1 
f,N 

(a new ) f � 

LN 

. (10) 

ence, the crux of the parameter problem is the solution of opti- 

ization problem given in (9) . 

When compared with the minimization problem in Candan [6 , 

q. 11] having the cost function of 1 
N log | R f,N | + log (x H R 

−1 
f,N 

x ) , we

ee that cost function of the minimization problem in (9) differs 

rom the earlier one with the inclusion of L a = L + N snapshots in-

tead of a single one. We present the details for this extension in 

he following section. We reiterate that some of the snapshots in 

his formulation are generated from the eigendecomposition of K 

atrix and augmented to actual snapshots, called observation vec- 

ors, to facilitate a solution similar to the one in Candan [6] . In

ection 2.3 , we present a reduced complexity implementation al- 

ernative for this solution. Different methods of initialization for 

he EM method are provided in Appendix A . 

.2. AR parameter estimation problem with multiple noise-free 

napshots 

The method in Candan [6] is an efficient method for AR pa- 

ameter estimation which is developed for a single snapshot un- 

er the noiseless observation scenario. This method can be consid- 

red as an alternative for numerical search based maximum like- 

ihood estimator having much higher complexity and it is shown 

he method performs very similar to the maximum likelihood esti- 

ator in many scenarios. In this section, we present the multiple- 

napshot extension of this method. 

.2.1. First stage: weighted forward-backward prediction with L a 
napshots 

Following [6] , we ignore log | R f,N | term in (9) and use the

eighted forward-backward prediction method to generate the 

rst stage estimate of a , a FS , as follows: 

 FS = argmin 

a 

L a ∑ 

� =1 

( 

N−P ∑ 

n =1 

w b [ n ] | e �,b [ n ] | 2 + 

N ∑ 

n = P+1 

w f [ n ] | e �, f [ n ] | 2 
) 

, 

(11) 

here e �, f [ n ] = f �,n + a T f �,n −1: −1: n −P and e �,b [ n ] = f �,n +
 

H f �,n +1: n + P are the forward and backward prediction errors 

ith weights w f [ n ] = n − P and w b [ n ] = N − P + 1 − n, respec-

ively. The problem in (11) can be solved by introducing the linear 

quation systems, A �, f a = −b �, f and A �,b a = −b �,b for � = 1 , . . . , L a ,

iven below, generating the forward and backward prediction 

rrors: ⎡ ⎢ ⎢ ⎣ 

f �,P f �,P−1 . . . f �, 1 
f �,P+1 f �,P . . . f �, 2 

. . . 
. . . . . . 

. . . 
f �,N−1 f �,N−2 . . . f �,N−P 

⎤ ⎥ ⎥ ⎦ 

︸ ︷︷ ︸ 
A �, f 

⎡ ⎢ ⎢ ⎣ 

a 1 
a 2 
. . . 

a P 

⎤ ⎥ ⎥ ⎦ 

︸ ︷︷ ︸ 
a 

= −

⎡ ⎢ ⎢ ⎣ 

f �,P+1 

f �,P+2 

. . . 
f �,N 

⎤ ⎥ ⎥ ⎦ 

︸ ︷︷ ︸ 
b �, f 

, 

 

 

 

 

f ∗
�,N−P+1 f ∗

�,N−P+2 . . . f ∗
�,N 

f ∗
�,N−P f ∗

�,N−P+1 . . . f ∗
�,N−1 

. . . 
. . . . . . 

. . . 
f ∗
�, 2 f ∗

�, 3 . . . f ∗
�,P+1 

⎤ ⎥ ⎥ ⎦ 

 ︷︷ ︸ 
A �,b 

⎡ ⎢ ⎢ ⎣ 

a 1 
a 2 
. . . 

a P 

⎤ ⎥ ⎥ ⎦ 

︸ ︷︷ ︸ 
a 

= −

⎡ ⎢ ⎢ ⎣ 

f ∗
�,N−P 

f ∗
�,N−P−1 

. . . 
f ∗
�, 1 

⎤ ⎥ ⎥ ⎦ 

︸ ︷︷ ︸ 
b �,b 

. 
4 
Using the introduced matrices, the final result of the first stage 

ecomes 

 FS = −
( 

L a ∑ 

� =1 

(
A 

H 
�, f WA �, f + A 

H 
�,b WA �,b 

)) −1 

( 

L a ∑ 

� =1 

(
A 

H 
�, f Wb �, f + A 

H 
�,b Wb �,b 

)) 

, (12) 

here W is the diagonal matrix with the diagonal entries of w f [ n ]

or n = { P + 1 , P + 2 , . . . , N} , i.e., 

.2.2. Second stage: maximizing likelihood around a FS 
The second stage takes into account the term log | R f,N | in (9) ,

6] . The nonlinear function is expanded into Taylor series at the 

perating point of a = a F S and a quadratic approximation for both 

erms of the sum forming the cost function of (9) is formed. We 

ote that both | R f,N | and R 

−1 
f,N 

are highly nonlinear functions of a . 

For the quadratic approximation of log | R f,N | , we can fol- 

ow the procedure given in Candan [6 , Eq. 11]. The procedure 

tilizes the expression | R f,N | = | R f,P | = 

∏ P 
i =1 (1 − | k i | 2 ) −i for N ≥

, Hayes [1] , Kay [42] that connects the autocorrelation ma- 

rix determinant of an AR( P ) process to the reflection coeffi- 

ients k = [ k 1 k 2 . . . k P ] 
T of its synthesis filter. The log-determinant

og | R f,N | = −∑ P 
i =1 i log (1 − | k i | 2 ) is approximated via Taylor series

t the expansion point of the reflection coefficient vector k that 

orresponds to the first stage estimate a F S and introducing a per- 

urbation vector δk as in Candan [6 , Eq. 16]. 

For the quadratic approximation of 
∑ L a 

� =1 
f H � R 

−1 
f,N 

f � , we can use [6, 

q. 21] directly 

L a 
 

� =1 

f H � R 

−1 
f,N 

f � = 

L a ∑ 

� =1 

(‖ b �, 1 + M �, 1 (G δk + G c δ
∗
k ) ‖ 

2 

−‖ b �, 2 + M �, 2 (G δk + G c δ
∗
k ) ‖ 

2 
)
, (13) 

here M �, 1 and M �, 2 are Hankel and Toeplitz matrices, respectively, 

ith the definitions of 

 �, 1 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

f ∗
�, 2 f ∗

�, 3 f ∗
�, 4 . . . f ∗

�,P+1 

f ∗
�, 3 f ∗

�, 4 f ∗
�, 5 . . . f ∗

�,P+2 

. . . 
. . . 

. . . . . . 
. . . 

f ∗
�,N−1 f ∗

�,N 0 . . . 0 

f ∗
�,N 0 0 . . . 0 

0 0 0 . . . 0 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

N×P 

, 

 �, 2 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

f �,N f �,N−1 f �,N−2 . . . f �,N−P+1 

0 f �,N f �,N−1 . . . f �,N−P+2 

0 0 f �,N . . . f �,N−P+3 

. . . 
. . . 

. . . 
. . . 

. . . 
0 0 0 . . . f �,N 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

P×P 

, (14) 

 �, 1 = f ∗
�, 1: N + M �, 1 a FS and b �, 2 = M �, 2 a FS are constant vectors. The

atrices G and G c are the P × P Jacobian matrices having entries 

 G ] i j = 

∂a i 
∂k j 

and [ G c ] i j = 

∂a i 
∂k ∗

j 
evaluated at the expansion point of

 FS and (G δk + G c δ
∗
k ) is the perturbation vector for a FS such that

 + δk is the reflection coefficients corresponding to a FS + (G δk + 

 c δ
∗
k ) . These matrices can be efficiently calculated via the inverse 

evinson–Durbin recursion, as given in Candan [6 , Algorithm 2]. 

By the Taylor series expansion of log (A + Bx ) ≈ log (A ) + 

B 
A 

x for

 x | � 1 , we can approximate the second term of (9) as 

og 

L a ∑ 

� =1 

f H � R 

−1 
f,N 

f � ≈ log (A ) 
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Algorithm 1: Suggested AR parameter estimation for multiple 

noise-free snapshots. 

Input : X = [ x 1 x 2 . . . x L ] , P 

Output : ̂  a , ̂ σ 2 
ε

// The first stage estimation by using L a = L and 
f l = x l , l = { 1 , 2 , . . . , L } for (12) 

1 a FS = −
(∑ L a 

� =1 

(
A 

H 
�, f 

WA �, f + A 

H 
�,b 

WA �,b 

))−1 (∑ L a 
� =1 

(
A 

H 
�, f 

Wb �, f + A 

H 
�,b 

Wb �,b 

))
// The second stage estimation by using L a = L and 
f l = x l , l = { 1 , 2 , . . . , L } 

2 a old = a FS 

3 for iteration ← 1 to 10 do 

// the loop with 10 iterations yields a good 
performance, see [6] 

4 k = atog ([ 1 (a old ) T ] T ) ; // atog (·) : Step-down 
recursion, [1, p. 236] 

5 if X is real-valued then 

6 Solve (Q 1 + ̃

 Q 1 + Q 2 + ̃

 Q 2 ) δk = −(r 1 + ̃

 r 1 ) ; // See (18) 
7 else 

8 Solve 

[
Q 1 + ̃

 Q 1 Q 2 + ̃

 Q 2 

Q 

∗
2 + ̃

 Q 

∗
2 Q 

∗
1 + ̃

 Q 

∗
1 

][
δk 

δ
∗
k 

]
= −

[
r 1 + ̃

 r 1 
r ∗

1 
+ ̃

 r ∗
1 

]
; // See 

(16) 

9 k = k + δk ; // Reflection coefficients update 
10 [ 1 (a new ) T ] T = gtoa (k ) ; // gtoa (·) : Step-up recursion, 

[1, p. 233] 
11 a old = a new 

12 (σ 2 
ε ) new = 

1 
LN 

∑ L a 
� =1 

f H � R 

−1 
f,N 

(a new ) f � ; // f H � R 

−1 
f,N 

(a new ) f � is 

calculated via [6, Algorithm 1] 
Return : ̂  a = a new , ̂ σ 2 

ε = (σ 2 
ε ) new 

i

s

l⎡⎢⎢⎢⎢⎢⎣
︸

w  

m

s

e

t

p

+ 

L a ∑ 

� =1 

‖ b �, 1 + M �, 1 (G δk + G c δ
∗
k ) ‖ 

2 − ‖ b �, 1 ‖ 

2 

A 

−
L a ∑ 

� =1 

‖ b �, 2 + M �, 2 (G δk + G c δ
∗
k ) ‖ 

2 − ‖ b �, 2 ‖ 

2 

A 

, (15) 

here A = 

∑ L a 
� =1 

(‖ b �, 1 ‖ 2 − ‖ b �, 2 ‖ 2 
)

is the value when δk is re- 

laced by all zeros vector in (13) . Hence, A = 

∑ L a 
� =1 

f H � R 

−1 
f,N 

(a FS ) f � ,

nd f H � R 

−1 
f,N 

(a FS ) f � can be efficiently calculated by using [6, Algo-

ithm 1] , without even constructing R f,N . 

Following the step of optimization, we reach the following 

quation system for the solution of δk and δ
∗
k , which are pertur- 

ation vectors for the complex-valued reflection coefficients corre- 

ponding to the initial reflection coefficients k generated from a FS . 

Q 1 + ̃

 Q 1 Q 2 + ̃

 Q 2 

Q 

∗
2 + ̃

 Q 

∗
2 Q 

∗
1 + ̃

 Q 

∗
1 

][
δk 

δ
∗
k 

]
= −

[
r 1 + ̃

 r 1 
r ∗1 + ̃

 r ∗1 

]
. (16) 

n the last equation, we have 

 

 1 = 

(
G 

H PG c 

)∗ + G 

H 
c PG 

A 

, ˜ Q 2 = 

(
G 

H PG 

)∗ + G 

H 
c PG c 

A 

, 

˜ r 1 = 

(
G 

H v 
)∗ + G 

H 
c v 

A 

, (17) 

here P = 

∑ L a 
� =1 

(
M 

H 
�, 1 

M �, 1 − M 

H 
�, 2 

M �, 2 

)
and v = 

 L a 
� =1 

(
M 

H 
�, 1 

b �, 1 − M 

H 
�, 2 

b �, 2 

)
. The matrices Q 1 and Q 2 are di- 

gonal matrices with diagonal entries [ Q 1 ] ii = 

i (k ∗
i 
) 2 

N(1 −| k i | 2 ) 2 
nd [ Q 2 ] ii = 

i 
N(1 −| k i | 2 ) 2 , and r 1 = [ r 1 , 1 r 1 , 2 . . . r 1 ,P ] 

T with

 1 ,i = 

ik ∗
i 

N(1 −| k i | 2 ) , i = { 1 , 2 , . . . , P } . In (16) , the gradients of the

uadratic approximation of 1 
N log | R f,N | and log 

∑ L a 
� =1 

f H � R 

−1 
f,N 

f � with 

espect to δ
∗
k , which can be expressed as Q 

∗
2 
δk + Q 

∗
1 
δ

∗
k + r ∗

1 
and

 

 

∗
2 
δk + ̃

 Q 

∗
1 
δ

∗
k + ̃

 r ∗
1 
, respectively, are utilized, as derived in Candan 

6] . 

For the real-valued processes, the reflection coefficients are also 

eal-valued, i.e., δk = δ
∗
k , and hence, (16) can be simplified as 

Q 1 + ̃

 Q 1 + Q 2 + ̃

 Q 2 ) δk = −(r 1 + ̃

 r 1 ) . (18) 

The proposed method for AR parameter estimation from multi- 

le noise-free snapshots is outlined in Algorithm 1 . It should be 

bserved from Algorithm 1 listing that the second stage is itera- 

ively applied by using the previous iteration result as the initial 

oint of the following iteration. 

.3. An efficient implementation for the suggested solution 

The expectation step of the suggested method requires the in- 

ersion of an N × N matrix for the calculation of posterior density 

arameters, i.e., mean vector and error covariance matrix in (4) . 

n general, the observation vector length ( N) is much greater than 

he order of AR process ( P ), and the implementation cost of the 

xpectation step becomes a computational bottleneck. In this sec- 

ion, we present four approaches to reduce the computational load. 

e start with the disturbance smoother, a variation of the Kalman 

moothers which does not require any matrix inversion for the es- 

imation of the mean vector in the present problem set-up [41, 

ec. 5.2.4] . 

.3.1. Efficient calculation of the mean vector 

It is well known that the Wiener filtering operation, which is 

he operation implemented with the equation set (4) , coincides 

ith the Kalman filtering for the processing of a wide sense sta- 

ionary input, with rational power spectral density, corrupted by 
5 
ndependent measurement noise, Hayes [1] . To facilitate the recur- 

ive calculation via the Kalman smoothing, we introduce the fol- 

owing state space model: 
 

 

 

 

 

 

 

x [ n ] 
x [ n − 1] 
x [ n − 2] 

. . . 
x [ n − P + 1] 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

 ︷︷ ︸ 
s n 

= 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 

−a old 

1 
−a old 

2 
−a old 

3 
. . . −a old 

P 

1 0 0 . . . 0 

0 1 0 . . . 0 

. . . 
. . . 

. . . 
. . . 

. . . 
0 0 . . . 1 0 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 

︸ ︷︷ ︸ 
A ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

x [ n − 1] 
x [ n − 2] 
x [ n − 3] 

. . . 
x [ n − P ] 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

︸ ︷︷ ︸ 
s n −1 

+ 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

(σε ) old 

0 

0 

. . . 
0 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

︸ ︷︷ ︸ 
b 

w n , 

y n = 

[
1 0 . . . 0 

]︸ ︷︷ ︸ 
c 

s n + v n , (19) 

here w n , y n and v n denote the process noise w [ n ] , the measure-

ent y [ n ] and the measurement noise v [ n ] , respectively. 

Table 1 gives the disturbance smoother equation for the state 

pace model of (19) . The disturbance smoother is a three-pass op- 

ration, where in the first pass the Kalman filtering is applied in 

he forward direction, the disturbance is estimated in the second 

ass and the smoothed state vector is formed in the last pass, 
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Table 1 

The disturbance smoother implementation of the Kalman smoother (also see [43] ). 

State Equation: s n = As n −1 + b w n , (w n ∼ CN (0 , 1)) 

y n = cs n + v n , (v n ∼ CN (0 , (σ 2 
v ) 

old )) 

Input: y n , n = 1 , 2 , . . . , N

Output: c ̆s n | N (first element of ̆s n | N ), n = 1 , 2 , . . . , N

Kalman Filtering: ̂ s 0 = [ 0 . . . 0 ] T , P 0 | 0 = (σ 2 
ε ) old R f,N (a old ) , (see (2) ) 

for n = 0 , 1 , . . . , N − 1 ̂ s n +1 | n = A ̂ s n | n , P n +1 | n = AP n | n A H + bb H , 

εn +1 = y n +1 − c ̂ s n +1 | n , 
γn +1 = cP n +1 | n c H + (σ 2 

v ) 
old , 

H n +1 = P n +1 | n c H γ −1 
n +1 

, ̂ s n +1 | n +1 = ̂

 s n +1 | n + H n +1 εn +1 , 

P n +1 | n +1 = P n +1 | n − H n +1 cP n +1 | n , 
�n +1 = A − AH n +1 c . 

Backward Smoothing: p N−1 = c H εN γ
−1 

N 
, ̂ e N−1 | N = b H p N−1 , 

for n = N − 2 , N − 3 , . . . , 1 

p n = c H εn +1 γ
−1 

n +1 
+ �H 

n +1 p n +1 , ̂ e n | N = b H p n . 

Smoothed State Vector: s̆ 1 | N = P 0 | 0 (c H ε1 γ
−1 

1 
+ �H 

1 p 1 ) , 

for n = 2 , 3 , . . . , N − 1 

s̆ n | N = A ̆s n −1 | N + b ̂  e n −1 | N , 
s̆ N| N = ̂

 s N| N . 

C  

i

f

o

v

2

t

t

K

t

t

e  

t

u

F

(

a  

s
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appe et al. [41 , Sec. 5.2.4]. The passes do not involve any matrix

nversion operation. Hence, the mean vector calculation cost is ef- 

ectively reduced from the N × N matrix inversion cost to the order 

f N complex multiplications. The computational savings becomes 

ery significant when N ≥ 100 . 

.3.2. Approximating error covariance matrix 

The matrix K in (4) corresponds to the error covariance ma- 

rix of the Wiener filter estimate. Unfortunately, it is not possible 

o retrieve an N × N dimensional error covariance matrix from a 

alman filtering implementation. To avoid the calculation of K ma- 

rix, we examine the limiting case of N → ∞ that corresponds to 

he infinite impulse response (IIR) noncausal Wiener filtering op- 

ration, Hayes [1 , Sec. 7.3]. As N → ∞ , the error covariance ma-

rix approaches to a Hermitian Toeplitz matrix whose first col- 

mn is sufficient to characterize the complete matrix, Gray [44] . 

or the filtering application with the noncausal IIR Wiener filter 

 H 

IIR-NC (z) ), the error autocorrelation sequence can be expressed 

s r e [ k ] = (σ 2 
v ) 

old h IIR-NC [ k ] , where h IIR-NC [ k ] is the impulse re-

ponse of the noncausal IIR Wiener filter. We suggest using the 

esidue theorem to evaluate the inverse z-transform of H 

IIR-NC (z) 

or the calculation of error correlation sequence: 

 e [ k ] = 

(σ 2 
v ) 

old 

2 π j 

∮ 
C: | z| =1 

H 

IIR-NC (z) z k −1 dz, k = { 0 , 1 , . . . , P } , 
(20) 

here H 

IIR-NC (z) = (σ 2 
ε ) old / ((σ 2 

ε ) old + 

σ 2 
v ) 

old A 

old (z)(A 

old (1 /z ∗)) ∗) , Hayes [1 , Sec. 7.3] for A 

old (z) =
 + a old 

1 
z −1 + a old 

2 
z −2 + . . . + a old 

P 
z −P . We suggest calculating only

 + 1 error correlation lags given in (20) and constructing K as a

anded matrix with P nonzero super/sub-diagonals. 

.3.3. Efficient calculation of tr (R 

−1 
f,N 

K ) 

The compressed likelihood function in (8) requires the calcula- 

ion of tr (R 

−1 
f,N 

K ) , where R 

−1 
f,N 

depends on the optimization variable 

 and K is a constant matrix. This problem has been suggested 

o be solved by an eigenvalue decomposition of K and express- 

ng tr (R 

−1 
f,N 

K ) as a sum of quadratic terms. We present an efficient 

ethod that avoids the computationally costly eigendecomposition 

tep. 

We utilize the Gohberg–Semencul (GS) formula from [40, 

ec. 3.9.4] for the inverse of R f,N . The GS formula states that 
6 
 

−1 
f,N 

= A 1 A 

H 
1 

− A 2 A 

H 
2 
, where 

 1 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

1 0 

a 1 1 

. . . a 1 1 

a P 
. . . a 1 1 

0 a P 
. . . 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

. . . 1 

0 . . . 0 a P . . . a 1 1 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

N×N 

, 

 2 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

0 0 

. . . 0 

0 

. . . 0 

a ∗P 
. . . 

. . . 
. . . 

a ∗P−1 a ∗P 
. . . 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

a ∗1 . . . a ∗P−1 a ∗P 0 . . . 0 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

N×N 

. (21) 

y defining a shift matrix S as 

 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

0 0 

1 0 

0 1 

. . . 

. . . 
. . . 

. . . 
. . . 

0 . . . 0 1 0 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

N×N 

, 

 1 matrix can be expressed as A 1 = [ a + | Sa + | S 2 a + | . . . | S N−1 a + ] ,
here a + denotes the first column of A 1 matrix from (21) and S k a + 

s the (k + 1) ’th column formed by shifting a + vector k times. We

lso define A 2 = [ a ∗
R 
| Sa ∗

R 
| S 2 a ∗

R 
| . . . | S N−1 a ∗

R 
] , where a ∗

R 
is the first

olumn of A 2 matrix. Using these definitions, tr (R 

−1 
f,N 

K ) can be ex- 

ressed as 

r (R 

−1 
f,N 

K ) = tr ((A 1 A 

H 
1 − A 2 A 

H 
2 ) K ) 

= tr (A 

H 
1 KA 1 ) − tr (A 

H 
2 KA 2 ) 

= a H + 

( 

N−1 ∑ 

k =0 

(S k ) H KS k 

) 

a + − a T R 

( 

N−1 ∑ 

k =0 

(S k ) H KS k 

) 

a ∗R 

= a H + Va + − a T R Va ∗R , (22) 
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Algorithm 2: Efficient calculation of optimal perturbation 

around a FS . 

Input : ̂  X = [ ̂  x 1 ̂  x 2 . . . ̂  x L ] , K , a FS 

Output : a new , (σ 2 
ε ) new 

1 a old = a FS 

2 for iteration ← 1 to 10 do 

// the loop with 10 iterations yields a good 
performance 

3 k = atog ([ 1 (a old ) T ] T ) ; // atog (·) : Step-down 
recursion, [1, p. 236] 

4 if ̂  X is real-valued then 

5 Solve (Q 1 + ̃

 Q 1 + Q tr , 1 + Q 2 + ̃

 Q 2 + Q tr , 2 ) δk = 

−(r 1 + ̃

 r 1 + r tr ) // See (23), where tr (R 

−1 
f,N 

K ) is 

computed by using the GS formula for R 

−1 
f,N 

6 else 

7 Solve 

[
Q 1 + ̃

 Q 1 + Q tr , 1 Q 2 + ̃

 Q 2 + Q tr , 2 

Q 

∗
2 + ̃

 Q 

∗
2 + Q 

∗
tr , 2 Q 

∗
1 + ̃

 Q 

∗
1 + Q 

∗
tr , 1 

][
δk 

δ
∗
k 

]
= 

−
[

r 1 + ̃

 r 1 + r tr 
r ∗1 + ̃

 r ∗1 + r ∗tr 

]
// See (24), where tr (R 

−1 
f,N 

K ) is 

computed by using the GS formula for R 

−1 
f,N 

8 k = k + δk ; // Reflection coefficients update 
9 [ 1 (a new ) T ] T = gtoa (k ) ; // gtoa (·) : Step-up recursion, 

[1,p. 233] 
10 a old = a new 

11 (σ 2 
ε ) new = 

1 
LN 

(
L tr (R 

−1 
f,N 

(a new ) K ) + 

∑ L 
l=1 ̂

 x H 
l 

R 

−1 
f,N 

(a new ) ̂  x l 

)
; 

// tr (R 

−1 
f,N 

(a new ) K ) is computed by using the GS formula 

for R 

−1 
f,N 

(a new ) 

Return : a new , (σ 2 
ε ) new 

c

σ

2

i

t

O
r  

i

i

t

r

O
c

o

e

o

r

L

L

H

O
v

i

s

here V = 

∑ N−1 
k =0 

(S k ) H KS k . Hence, tr (R 

−1 
f,N 

K ) is a quadratic product

f the unknown parameters. 

.3.4. Efficient calculation of optimal perturbation around a FS 
The objective function (8) to be maximized involves | R f,N | and 

 tr (R 

−1 
f,N 

K ) + 

∑ L 
l=1 ̂

 x H 
l 

R 

−1 
f,N ̂

 x l , where the elements of matrix R f,N are

he functions of vector a . While the determinant of R f,N can be 

ritten as a quadratic product of the reflection coefficients cor- 

esponding to the vector a , the other reduces to quadratic prod- 

ct in terms of a . Following the approach given in Candan [6] ,

e convert the problem domain to the reflection coefficient do- 

ain and treat a as a vector-valued function of the reflection 

oefficients, and then, we expand it into a Taylor series around 

he reflection coefficients derived from the first stage result ( a FS ) 

nd keep only the first order term, i.e., the Jacobian term, in 

he expansion. In brief, for tr (R 

−1 
f,N 

K ) = a H + Va + − a T 
R 

Va ∗
R 
, we ex-

ress the unknown vectors as a + = a FS , + + G + δk + G + c δ
∗
k and a R =

 FS ,R + G R δk + G Rc δ
∗
k , where a FS , + = [ 1 a T 

FS 
0 T 

N−P−1 
] T and a FS ,R =

 0 T 
N−P 

a T 
FS ,P: −1:1 

] T . The vectors δk and its conjugate δ
∗
k denote 

he unknown reflection coefficient perturbation vectors following 

he approach in Candan [6] . The matrices G + , G + c , G R and G Rc 

re the Jacobian matrices, for the vector-valued functions a FS , + 
nd a FS ,R in terms of their reflection coefficients, with the def- 

nitions of G + = [ 0 P G 

T 0 P ×(N−P −1) ] 
T , G + c = [ 0 P G 

T 
c 0 P ×(N−P −1) ] 

T ,

 R = [ 0 P ×(N−P ) ̃
 G 

T ] T and G Rc = [ 0 P ×(N−P ) ̃
 G 

T 
c ] 

T , where G and G c 

re the Jacobian matrices corresponding to a FS , as defined in the 

escription of (13) ; [ ̃  G ] i j = [ G ] pj and [ ̃  G c ] i j = [ G c ] pj for p = P − i +
 and i, j ∈ { 1 , 2 , . . . , P } . With these definitions, the gradient of

 

H + Va + with respect to δ
∗
k can be given as Q 3 δk + Q 3 c δ

∗
k + r 3 with

 3 = G 

H + VG + + (G 

H + c VG + c ) ∗, Q 3 c = G 

H + VG + c + (G 

H + c VG + ) ∗ and r 3 =
 

H + Va FS , + + (G 

H + c Va FS , + ) 
∗. Similarly, the gradient of a T 

R 
Va ∗

R 
with re-

pect to δ
∗
k is Q 4 δk + Q 4 c δ

∗
k + r 4 with Q 4 = G 

T 
R 

V 

∗G 

∗
Rc 

+ (G 

T 
Rc 

V 

∗G 

∗
R 
) ∗,

 4 c = G 

T 
R V 

∗G 

∗
R + (G 

T 
Rc V 

∗G 

∗
Rc ) 

∗ and r 4 = G 

T 
R V 

∗a ∗
FS ,R 

+ (G 

T 
Rc V 

∗a ∗
FS ,R 

) ∗.

ombining the gradient results of tr (R 

−1 
f,N 

K ) with the gradients of 

erms used for (16) , we get the following equation system: 

Q 1 + ̃

 Q 1 + Q tr , 1 Q 2 + ̃

 Q 2 + Q tr , 2 
Q 

∗
2 + ̃

 Q 

∗
2 + Q 

∗
tr , 2 Q 

∗
1 + ̃

 Q 

∗
1 + Q 

∗
tr , 1 

][
δk 

δ
∗
k 

]
= −

[
r 1 + ̃

 r 1 + r tr 
r ∗1 + ̃

 r ∗1 + r ∗tr 

]
, (23) 

here Q tr , 1 = 

L 
A 
(Q 3 c − Q 4 c ) 

∗, Q tr , 2 = 

L 
A 
(Q 3 − Q 4 ) 

∗ and r tr =
L 
A 
(r 3 − r 4 ) 

∗ with A = L tr (R 

−1 
f,N 

K ) + 

∑ L 
l=1 ̂

 x H 
l 

R 

−1 
f,N ̂

 x l . In (23) , the terms

 1 , Q 2 and r 1 corresponding to 1 
N log | R f,N | are the same as used in

16) ; the terms ˜ Q 1 , 
˜ Q 2 and ̃

 r 1 corresponding to 
∑ L 

l=1 ̂
 x H 
l 

R 

−1 
f,N ̂

 x l are 

alculated as given in (17) by using P = 

∑ L 
l=1 

(
M 

H 
l, 1 

M l, 1 − M 

H 
l, 2 

M l, 2 

)
nd v = 

∑ L 
l=1 

(
M 

H 
l, 1 

b l, 1 − M 

H 
l, 2 

b l, 2 

)
, where b l, 1 = ̂

 x ∗
l, 1: N 

+ M l, 1 a FS , 

 l, 2 = M l, 2 a FS , and the matrices M l, 1 and M l, 2 are formed by using

14) with f l = ̂

 x l , l = { 1 , 2 , . . . , L } . 
To determine the optimal perturbation vector for the real- 

alued processes, by using the condition δk = δ
∗
k , (23) can be sim- 

lified as 

Q 1 + ̃

 Q 1 + Q tr , 1 + Q 2 + ̃

 Q 2 + Q tr , 2 ) δk = −(r 1 + ̃

 r 1 + r tr ) . (24)

To solve the problem of AR parameter estimation with mul- 

iple noisy snapshots, the suggested second stage for the calcu- 

ation of tr (R 

−1 
f,N 

K ) without an eigendecomposition is outlined in 

lgorithm 2 . The complete procedure including four cases is given 

n Algorithm 3 . In Algorithm 3 , the first case calculates K matrix

xactly and assumes σ 2 
v is known by following Lines 7, 15 and 19; 

he second case calculates K matrix approximately and assumes 
2 
v is known by following Lines 10, 17 and 19; the third and fourth 
7 
ases are similar to the first and second cases, respectively, except 
2 
v is estimated via Line 21. 

.4. Computational complexity considerations 

In noise-free multiple-snapshot case given in Algorithm 1 , a FS 
s computed with O 

(
P 3 
)

multiplications in the first stage, and 

he optimal perturbation vector δk is computed with O 

(
P 3 
)

and 

 

(
8 P 3 

)
multiplications for the real- and complex-valued processes, 

espectively, in the second stage. In (16) , A = 

∑ L a 
� =1 

f H � R 

−1 
f,N 

f � , which

s required to get ˜ Q 1 , 
˜ Q 2 and 

˜ r 1 , is calculated efficiently by us- 

ng Candan [6 , Algorithm 1], which decreases O 

(
N 

3 
)

operations 

o O ( NP ) multiplications to calculate f H � R 

−1 
f,N 

f � . The noise-free case 

equires L a = L snapshots and corresponds to O 

(
LNP + P 3 

)
and 

 

(
LNP + 8 P 3 

)
multiplications per EM iteration for the real- and 

omplex-valued processes, respectively. 

In noisy multiple-snapshot case with the exact calculation 

f K matrix given in Algorithm 3 , both of the inversion and 

igendecomposition of N × N matrix required in expectation step 

f EM and the second part of the maximization step of EM, 

espectively, are computed with O 

(
N 

3 
)

operations. Owing to 

ine 15, Algorithm 1 is also utilized for this case with L a = 

 + N instead of L a = L corresponding to the noise-free case. 

ence, the overall complexity is O 

(
N 

3 + (L + N ) N P + P 3 
)

and 

 

(
N 

3 + (L + N ) N P + 8 P 3 
)

operations for the real- and complex- 

alued processes, respectively, in each EM iteration. 

When K matrix is calculated approximately in Algorithm 3 , the 

nversion of N × N matrix is not required owing to the disturbance 

moother, and the eigendecomposition of K matrix is eliminated 
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Algorithm 3: Proposed AR parameter estimation method, also 

see [43] . 

Input : Y = [ y 1 y 2 . . . y L ] , P , t max : the maximum number of 

iterations, σ 2 
v (optional) 

Output : ̂  a , ̂ σ 2 
ε , ̂ σ 2 

v (or σ 2 
v if exists) 

1 Initialize parameters a old = a ini , (σ 2 
ε ) old = (σ 2 

ε ) ini and 

(σ 2 
v ) 

old = (σ 2 
v ) 

ini by following Algorithm 4 

2 for t ← 1 to t max do 

// Expectation step of EM, see (4) 
3 if exact K calculation is desired then 

4 Q = ((σ 2 
ε ) old R f,N (a old ) + (σ 2 

v ) 
old I N ) 

−1 ; // N × N 

matrix inversion 
5 for l ← 1 to L do 

6 ̂ x l = (σ 2 
ε ) old R f,N (a old ) Qy l ; // Mean vector of the 

posterior density f (x l | y l ) 
7 K = (σ 2 

ε ) old R f,N (a old ) − (σ 4 
ε ) old R f,N (a old ) QR f,N (a old ) ; 

// Covariance matrix 
8 else 

9 Compute ̂ X = [ ̂  x 1 ̂  x 2 . . . ̂  x L ] by using the disturbance 

smoother; // See Table 1 
10 Construct K matrix as a banded matrix with P nonzero 

super/sub-diagonals by using P + 1 error correlation 

lags, r e [ k ] = 

(σ 2 
v ) 

old 

2 π j 

∮ 
C: | z| =1 H 

IIR-NC (z) z k −1 dz, 

k = { 0 , 1 , . . . , P } , where H 

IIR-NC (z) = 

(σ 2 
ε ) old / ((σ 2 

ε ) old + (σ 2 
v ) 

old A 

old (z)(A 

old (1 /z ∗)) ∗) and 

A 

old (z) = 1 + a old 
1 

z −1 + a old 
2 

z −2 + . . . + a old 
P 

z −P . 

// Maximization step of EM 
// The first stage estimation by using L a = L and 

f l = ̂

 x l , l = { 1 , 2 , . . . , L } for (12) 
11 a FS = −

(∑ L a 
� =1 

(
A 

H 
�, f 

WA �, f + A 

H 
�,b 

WA �,b 

))−1 (∑ L a 
� =1 

(
A 

H 
�, f 

Wb �, f + A 

H 
�,b 

Wb �,b 

))
// The second stage 

estimation 
12 if exact K calculation is desired then 

13 K = 

∑ N 
n =1 λn e n e 

H 
n ; // the eigendecomposition of 

N × N matrix 
14 Form the set of L a = L + N vectors f � , � = 1 , 2 , . . . , L a , 

where f l = ̂

 x l , l = { 1 , 2 , . . . , L } , and 

f L + n = 

√ 

Lλn e n , n = { 1 , 2 , . . . , N} 
15 Compute a new and (σ 2 

ε ) new by following the lines from 

2 to 12 in Algorithm 1 

16 else 

17 Compute a new and (σ 2 
ε ) new by following Algorithm 2 

18 if σ 2 
v exists then 

19 (σ 2 
v ) 

new = σ 2 
v 

20 else 

21 (σ 2 
v ) 

new = 

1 
LN 

(
L tr (K ) + 

∑ L 
l=1 ‖ y l −̂ x l ‖ 2 

)
22 a old = a new , (σ 2 

ε ) old = (σ 2 
ε ) new and (σ 2 

v ) 
old = (σ 2 

v ) 
new 

Return : ̂  a = a new , ̂ σ 2 
ε = (σ 2 

ε ) new and 

̂ σ 2 
v = (σ 2 

v ) 
new 

b

A  

p

i

3

r

c

r

d

a

i  

M

t

t

a√
i

i

d

1  

b

i

c

f

t

o

t

F

[

p

fl

i  

l

y

t

a

t  

m

v

d

n
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o

p

f

a  

σ
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i
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m
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v
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3

y using the GS formula for the second stage estimation given in 

lgorithm 2 . Similar to Algorithm 1 , and Algorithm 2 has the com-

lexity of O 

(
LNP + P 3 

)
and O 

(
LNP + 8 P 3 

)
multiplications per EM 

teration for the real- and complex-valued processes, respectively. 

. Numerical results 

We present a performance comparison of the suggested AR pa- 

ameter estimation method under different noise conditions in- 

luding noise-free case. The performance comparison of AR pa- 
8 
ameter estimation methods requires an application specific fi- 

elity criterion such as spectral peak location, spurious peak avoid- 

nce, filter coefficient/pole accuracy, etc. as discussed at length 

n Kay [42] . In this study, we use objective metrics such as total

SE E{‖ a −̂ a ‖ 2 } , attained likelihood value and the Hellinger dis- 

ance between true and estimated Gaussian random vector densi- 

ies. The Hellinger distance between zero-mean Gaussian vectors p 

nd q with covariance matrices �1 and �2 is given as H(p , q ) = 

 

1 − | �1 | 1 / 4 | �2 | 1 / 4 / | 1 2 (�1 + �2 ) | 1 / 2 , [45] . The Hellinger distance 

s a true metric satisfying positivity, symmetry, triangle inequal- 

ty axioms. The Hellinger distance is utilized to upper bound the 

etection error of equally likely hypotheses p and q with p e ≤
 / 2(1 − H 

2 (p , q )) , and used as a robust measure for the distance

etween distributions, [46] . All experiments are conducted by us- 

ng 100 Monte Carlo runs. 

Experiment 1 - Multiple noise-free snapshots: This experiment 

ompares the likelihood values attained by the estimates of dif- 

erent methods including the forward-backward prediction (FB), 

he weighted forward-backward prediction (wFB), which performs 

nly the first stage estimation presented in Section 2.2.1 , and 

he numerical search method initialized with the Burg’s method. 

or comparison purposes, one of the cases presented in Candan 

6] that is the estimation of the real- and complex-valued AR(6) 

arameters randomly generated from the uniformly distributed re- 

ection coefficients and σ 2 
ε = 0 . 36 for a single snapshot scenarios 

s repeated for L = 10 snapshots. The results in Fig. 2 closely fol-

ow the earlier conclusions and reveal that the proposed approach 

ields likelihood values which are almost identical to the ones at- 

ained by the numerical search having much higher complexity. 

Experiment 2 - Multiple noisy snapshots: This experiment ex- 

mines the estimation accuracy of the method on an AR(4) sys- 

em with A (z) = 1 + 0 . 1 z −1 + 0 . 2 z −2 + 0 . 3 z −3 + 0 . 4 z −4 under unity

easurement noise variance, σ 2 
v = 1 . The σ 2 

ε parameter in (1) is 

aried according to the experiment SNR. Fig. 3 shows the Hellinger 

istance and total MSE ( E{‖ a −̂ a ‖ 2 } ) comparisons for different 

umber of snapshots L, where each snapshot is a vector of length 

 = 50 . Four estimators, for the cases of K is calculated exactly 

r approximately and σ 2 
v is known exactly or estimated, are com- 

ared. Fig. 3 also includes the estimator performance in the noise- 

ree scenario. The estimator for the noise-free case has ̂ x l = y l 
nd K = 0 N×N . These relations can be also retrieved from (4) as
2 
v → 0 . The asymptotic CRB (ACRB) [8,9] is provided as a perfor- 

ance benchmark for total MSE comparisons. The results of a sim- 

lar setup constructed to compare the estimation accuracy for the 

omplex-valued AR(4) system with A (z) = 1 + (0 . 1 + j0 . 2) z −1 +
0 . 2 − j0 . 3) z −2 + (0 . 3 + j0 . 1) z −3 + (0 . 4 − j0 . 2) z −4 and σ 2 

v = 1 are

hown in Fig. 4 . 

We note from Figs. 3 and 4 that there is a significant perfor- 

ance gap between the cases of known and unknown measure- 

ent noise variance. Yet, in both cases the total MSE value for a 

ector coincides the ACRB associated with the problem. More de- 

ailed numerical results on the real-valued case for SNR of 10 dB 

s given in Table 2 , where the column labeled as “CRB” is the non-

symptotic (exact) bound for the problem by numerical differenti- 

tion [47, Eq. (3.31), p. 47] . 

The results shown in Fig. 3 with SNR = 0 dB and Fig. 4 with

NR = 0 dB and SNR = 5 dB are obtained by initializing the 

uggested method with (A.7) , instead of (A.5) and (A.6) used in 

lgorithm 3 . Further details on algorithm initialization is given in 

ppendix A . 

Experiment 3 - Single noisy snapshot: This experiment com- 

ares the estimation accuracy of the proposed method for un- 

nown noise variance with the state-of-the-art methods, SS [16] , 

IV [17] , IFILS [15] , XZ [18] , and four methods (EVK-1, EVK-2, EVK-

, EVK-4) given in Esfandiari et al. [25] . The experiment is con- 
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Fig. 2. Experiment 1 - Multiple noise-free snapshots: Likelihood value comparison for AR(6) parameters randomly generated from the uniformly distributed reflection 

coefficients and σ 2 
ε = 0 . 36 . 

Fig. 3. Experiment 2 - The Hellinger distance metric and total MSE comparisons of proposed method at different number of snapshots for the real-valued AR(4) process. 

9 
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Fig. 4. Experiment 2 - The Hellinger distance metric and total MSE comparisons of proposed method at different number of snapshots for the complex-valued AR(4). 

Table 2 

The Hellinger distance metric and total MSE comparisons of the proposed method for different sam ple sizes and number of snapshots on the real-valued AR(4) 

process given in Experiment 2 (SNR = 10 dB). 

Hellinger distance E{‖ a −̂ a ‖ 2 } 

N L 

K : exact K : app. K : exact K : app. K : exact K : app. K : exact K : app. ACRB CRB 

σ 2 
v : exact σ 2 

v : exact σ 2 
v : est. σ 2 

v : est. σ 2 
v : exact σ 2 

v : exact σ 2 
v : est. σ 2 

v : est. [8,9] σ 2 
v : exact 

50 1 0.7017 0.7022 0.6884 0.6869 0.0946 0.0948 0.0944 0.0938 0.0817 0.0858 

5 0.3624 0.3627 0.3559 0.3551 0.0163 0.0163 0.0164 0.0164 0.0163 0.0165 

10 0.2602 0.2604 0.2642 0.2643 0.0085 0.0086 0.0090 0.0090 0.0082 0.0082 

100 1 0.7041 0.7043 0.6870 0.6866 0.0420 0.0420 0.0424 0.0424 0.0409 0.0418 

5 0.3799 0.3801 0.4270 0.4272 0.0089 0.0089 0.0099 0.0099 0.0082 0.0082 

10 0.2680 0.2681 0.3580 0.3585 0.0043 0.0043 0.0053 0.0053 0.0041 0.0041 

150 1 0.6905 0.6906 0.6870 0.6869 0.0280 0.0280 0.0283 0.0283 0.0272 0.0277 

5 0.3794 0.3796 0.4705 0.4706 0.0060 0.0060 0.0078 0.0078 0.0054 0.0055 

10 0.2590 0.2591 0.4288 0.4291 0.0028 0.0028 0.0046 0.0046 0.0027 0.0027 

500 1 0.7080 0.7081 0.8247 0.8247 0.0087 0.0087 0.0114 0.0114 0.0082 0.0082 

5 0.3652 0.3653 0.7804 0.7804 0.0017 0.0017 0.0048 0.0048 0.0016 0.0016 

10 0.2645 0.2645 0.7771 0.7771 0.0008 0.0008 0.0041 0.0041 0.0008 0.0008 

1000 1 0.6882 0.6882 0.9210 0.9210 0.0043 0.0043 0.0074 0.0074 0.0041 0.0041 

5 0.3733 0.3733 0.9295 0.9295 0.0009 0.0009 0.0046 0.0046 0.0008 0.0008 

10 0.2631 0.2631 0.9222 0.9222 0.0004 0.0004 0.0038 0.0038 0.0004 0.0004 

d

i

[  

f  

=  

δ  

a

d

a

A

M

ucted on the single snapshot real-valued AR(4) process defined 

n Experiment 2. Similar to Example 1 given in Esfandiari et al. 

25] , the parameter settings are as follows: q = 2 and δ = 0 . 001

or IFILS; δ1 = 0 . 01 when SNR = 0 dB and δ1 = 0 . 001 when SNR

 5 dB or SNR = 10 dB, δ2 = 0 . 01 and η = 0 . 96 for XZ; q = 3 and

= 0 . 1 for EVK-1 and EVK-2; q = 4 and δ = 0 . 1 for EVK-3; q = 3
10 
nd m = 8 for EVK-4. (Readers can consult [25] for the parameter 

escriptions.) 

Table 3 shows that the suggested method using either exact or 

pproximated error covariance matrix K provides more accurate 

R parameter estimates in terms of Hellinger distance and total 

SE in comparison to other methods by denoting the best attained 
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Table 3 

The Hellinger distance metric (first line), total MSE (second line) and the number of unstable system estimates out of 100 runs (third line) comparisons of the proposed 

method with other methods for the single snapshot real-valued AR(4) process defined in Experiment 2. 

N SNR 

K : exact K : app. SS EIV IFILS XZ EVK-1 EVK-2 EVK-3 EVK-4 

σ 2 
v : est. σ 2 

v : est. [16] [17] [15] [18] [25] [25] [25] [25] 

50 0 dB 0 . 8312 0.8315 0.9326 0.9387 0.9402 0.9515 0.9355 0.9441 0.9630 0.8967 

0 . 2520 0.2534 0.6938 0.3245 0.2554 0.3685 0.5761 0.6164 0.6421 0.3814 

– – 70 10 13 36 31 35 19 –

5 dB 0.7451 0 . 7446 0.9299 0.8501 0.8589 0.9472 0.8465 0.9359 0.9034 0.8925 

0.1156 0 . 1152 0.3225 0.1777 0.1691 0.2993 0.2921 0.3943 0.4148 0.2310 

– – 62 10 8 20 19 22 12 –

10 dB 0.6884 0 . 6869 0.9226 0.8177 0.8109 0.9149 0.7843 0.9057 0.8659 0.9076 

0.0944 0 . 0938 0.2672 0.1486 0.1456 0.2075 0.2017 0.2301 0.3716 0.1888 

– – 60 6 11 26 14 14 8 –

100 0 dB 0.8558 0 . 8555 0.9596 0.9535 0.9602 0.9858 0.9606 0.9781 0.9782 0.9259 

0 . 1265 0.1266 0.9673 0.2867 0.2675 0.4038 0.5159 0.6870 0.5805 0.3014 

– – 60 10 14 26 15 21 10 –

5 dB 0 . 8297 0.8299 0.9314 0.8687 0.9177 0.9417 0.8595 0.9487 0.9436 0.9623 

0.0620 0 . 0620 0.2090 0.1213 0.1450 0.1772 0.1587 0.2430 0.3508 0.1452 

– – 33 4 7 30 10 16 2 –

10 dB 0.6870 0 . 6866 0.9190 0.8027 0.8405 0.9137 0.7917 0.9048 0.8869 0.9755 

0.0424 0 . 0424 0.1943 0.0867 0.0884 0.1860 0.1572 0.2482 0.3240 0.1193 

– – 34 1 5 17 8 11 5 –

150 0 dB 0.8703 0 . 8698 0.9594 0.9623 0.9704 0.9703 0.9602 0.9877 0.9752 0.9576 

0.0849 0 . 0848 0.2577 0.1860 0.1711 0.2945 0.4021 0.4964 0.4038 0.2034 

– – 46 8 8 29 15 19 7 –

5 dB 0.8893 0.8895 0.9351 0 . 8788 0.9105 0.9286 0.8885 0.9347 0.9432 0.9767 

0 . 0502 0.0502 0.1090 0.0764 0.1030 0.1918 0.1825 0.2439 0.2787 0.1171 

– – 19 3 6 16 9 14 7 –

10 dB 0.6870 0 . 6869 0.9291 0.8233 0.8753 0.8919 0.8122 0.8950 0.8914 0.9855 

0.0283 0 . 0283 0.1235 0.0460 0.0668 0.1647 0.1052 0.1628 0.2125 0.0881 

– – 23 – 1 15 2 5 3 –

Table 4 

The average computational time (in seconds) comparison of the proposed method for different sam ple sizes and number of snapshots for Experiment 2 (SNR = 10 dB). Rt 

denotes the ratio of computational times. 

Real-valued AR(4) Complex-valued AR(4) 

N L 

K : exact K : app. 

Rt 

K : exact K : app. 

Rt 

K : exact K : app. 

Rt 

K : exact K : app. 

Rt σ 2 
v : exact σ 2 

v : exact σ 2 
v : est. σ 2 

v : est. σ 2 
v : exact σ 2 

v : exact σ 2 
v : est. σ 2 

v : est. 

50 1 0.2810 0.0372 7.55 0.2802 0.0370 7.58 0.5379 0.0562 9.56 0.5351 0.0552 9.69 

5 0.3008 0.0654 4.60 0.3009 0.0654 4.60 0.5829 0.1083 5.38 0.5812 0.1082 5.37 

10 0.3270 0.0941 3.47 0.3270 0.0942 3.47 0.6369 0.1628 3.91 0.6380 0.1638 3.90 

100 1 0.5801 0.0427 13.57 0.5806 0.0428 13.55 1.2242 0.0729 16.79 1.2054 0.0725 16.62 

5 0.6071 0.0810 7.49 0.6072 0.0812 7.48 1.2338 0.1328 9.29 1.2373 0.1361 9.09 

10 0.6327 0.1152 5.49 0.6348 0.1151 5.52 1.2879 0.1951 6.60 1.2800 0.1940 6.60 

150 1 0.9734 0.0519 18.75 0.9723 0.0518 18.76 1.9246 0.0811 23.72 1.9184 0.0814 23.58 

5 0.9845 0.0976 10.09 0.9863 0.0976 10.10 1.9972 0.1590 12.56 1.9967 0.1607 12.43 

10 1.0143 0.1377 7.36 1.0160 0.1380 7.36 2.0345 0.2273 8.95 2.0287 0.2285 8.88 

500 1 5.6314 0.1071 52.58 5.8269 0.1070 54.48 13.7240 0.1844 74.43 13.7681 0.1850 74.42 

5 5.7710 0.2515 22.94 5.9788 0.2525 23.68 14.2745 0.4096 34.85 14.2137 0.4110 34.58 

10 5.9106 0.3766 15.69 6.1155 0.3774 16.20 14.8254 0.6022 24.62 14.7588 0.6093 24.22 

1000 1 18.9031 0.2096 90.19 19.0119 0.2093 90.83 48.2300 0.3524 136.88 48.0578 0.3531 136.09 

5 20.2822 0.5896 34.40 20.5374 0.5886 34.89 48.8622 0.8417 58.05 48.3051 0.8422 57.35 

10 21.2807 0.9352 22.75 21.6083 0.9370 23.06 51.6543 1.2907 40.02 50.9763 1.2935 39.41 

v
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o

l

m

a

o

p

t

t

b

p

alue of performance metrics (the lowest Hellinger distance and 

otal MSE) with boldface. Table 3 also includes information on the 

umber of unstable AR systems out of 100 trials. (The results for 

NR = 0 dB are obtained by initializing with (A.7) .) 

Experiment 4 - Average computational time: This experiment 

ompares the average computational time (in seconds) of the 

roposed method for different sample sizes N and the num- 

er of snapshots L in Experiment 2 set-up with SNR = 10 dB. 

able 4 shows that the suggested method with approximate 

rror covariance matrix K (eliminating the inversion of N × N

atrix via the disturbance smoother in expectation step and 

he eigendecomposition via the GS formula in maximization 

tep of EM) requires significantly less CPU time than the sug- 

ested method with exact K matrix. The ratios of average com- 

utational times are given in the column of Table 4 labeled 
s “Rt”. n

11 
. Conclusion 

An expectation-maximization based solution for noisy AR pa- 

ameter estimation problem and its efficient implementation are 

iven in this study. The heart of the method contains an extension 

f the formulation given in Candan [6] for a single snapshot like- 

ihood maximization of AR parameter estimation problem to the 

ultiple snapshots. In addition to this, the current formulation ex- 

mines the problem of AR parameter estimation under the effect 

f white noise with the unknown variance given multiple inde- 

endent snapshots. A highly efficient, yet approximate, implemen- 

ation of the suggested method is also given. The performance of 

he approximate version is almost identical to the exact version; 

ut the approximate version eliminates N 

3 + N 

2 P multiplications 

er EM iteration ( N is the snapshot vector length) resulting in sig- 

ificant cost savings in both computation and memory. We present 
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Algorithm 4: The initialization of the suggested method, also 

see [43] . 

Input : Y = [ y 1 y 2 . . . y L ] , P , σ
2 
v (optional) 

Output : a ini , (σ 2 
ε ) ini , (σ 2 

v ) 
ini 

1 a ini = −
(∑ L 

l=1 

(
A 

H 
l, f 

WA l, f + A 

H 
l,b 

WA l,b 

))−1 (∑ L 
l=1 

(
A 

H 
l, f 

Wb l, f + A 

H 
l,b 

Wb l,b 

))
2 if σ 2 

v exists then 

3 (σ 2 
v ) 

ini = σ 2 
v , and (σ 2 

ε ) ini = 

1 
LN 

∑ L 
l=1 y 

H 
l 

R 

−1 
f,N 

(a ini ) y l − σ 2 
v 

4 else 

5 (σ 2 
v ) 

ini = R 

{
(a ini ) H ( ̂  r y + ̂

 R y a 
ini ) 

}
/ ‖ a ini ‖ 2 and 

(σ 2 
ε ) ini = ̂

 r y [0] + ̂

 r H y a 
ini − (σ 2 

v ) 
ini , 

6 or (σ 2 
v ) 

ini = (σ 2 
ε ) ini = 

1 
2 LN 

∑ L 
l=1 y 

H 
l 

R 

−1 
f,N 

(a ini ) y l 

Return : a ini , (σ 2 
ε ) ini , (σ 2 

v ) 
ini 

w

E

E  

a

(

m

p  

t

(

k  

t

(

S

f

C

s

a

w

e

R

he ready-to-use MATLAB codes of the proposed method reproduc- 

ng the presented numerical results for further exploration in Çayır 

nd Candan [43] . 
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ppendix A. Initialization of suggested algorithm 

The proposed method requires the initial estimates for a , σ 2 
ε

nd σ 2 
v , see (4) . By applying the weighted forward-backward pre- 

iction approach on y l , l = { 1 , 2 , . . . , L } , as done for f � in (11) ,

 = 1 , . . . , L a , the initial estimate of a , a ini , is calculated as 

 

ini = −
( 

L ∑ 

l=1 

(
A 

H 
l, f WA l, f + A 

H 
l,b WA l,b 

)) −1 

( 

L ∑ 

l=1 

(
A 

H 
l, f Wb l, f + A 

H 
l,b Wb l,b 

)) 

(A.1) 

here 

 l, f = 

⎡ ⎢ ⎢ ⎣ 

y l,P y l,P−1 . . . y l, 1 
y l,P+1 y l,P . . . y l, 2 

. . . 
. . . . . . 

. . . 
y l,N−1 y l,N−2 . . . y l,N−P 

⎤ ⎥ ⎥ ⎦ 

, b l, f = 

⎡ ⎢ ⎢ ⎣ 

y l,P+1 

y l,P+2 

. . . 
y l,N 

⎤ ⎥ ⎥ ⎦ 

, 

A l,b = 

⎡ ⎢ ⎢ ⎣ 

y ∗
l,N−P+1 

y ∗
l,N−P+2 

. . . y ∗
l,N 

y ∗
l,N−P 

y ∗
l,N−P+1 

. . . y ∗
l,N−1 

. . . 
. . . . . . 

. . . 
y ∗

l, 2 
y ∗

l, 3 
. . . y ∗

l,P+1 

⎤ ⎥ ⎥ ⎦ 

, b l,b = 

⎡ ⎢ ⎢ ⎣ 

y ∗
l,N−P 

y ∗
l,N−P−1 

. . . 
y ∗

l, 1 

⎤ ⎥ ⎥ ⎦ 

, 

nd W = diag (1 , 2 , . . . , N − P ) . Then, the initial values of σ 2 
ε and σ 2 

v 
re determined by using YW equations and a ini . 

According to the block diagram shown in Fig. 1 , the YW equa- 

ions for the autocorrelation sequence of the AR( P ) process x [ n ] can

e written as 

 x [ k ] = −
P ∑ 

p=1 

a p r x [ k − p] + σ 2 
ε δ[ k ] , k � 0 , (A.2)

here r x [ k ] = E{ x [ n ] x ∗[ n − k ] } ; and the YW equations for the auto-

orrelation sequence of y [ n ] can be expressed as 

 y [ k ] = r x [ k ] + σ 2 
v δ[ k ] k � 0 , (A.3)

hich implies that r y [ k ] = r x [ k ] for k > 0 , [1] . Using (A.2) and (A.3) ,

e get 

R y − σ 2 
v I P 

)
a = −r y , (A.4) 

here 

 y = 

⎡ ⎢ ⎢ ⎣ 

r y [0] r y [ −1] . . . r y [ −P + 1] 
r y [1] r y [0] . . . r y [ −P + 2] 

. . . 
. . . 

. . . 
. . . 

r y [ P − 1] r y [ P − 2] . . . r y [0] 

⎤ ⎥ ⎥ ⎦ 

, r y = 

⎡ ⎢ ⎢ ⎣ 

r y [1] 
r y [2] 

. . . 
r y [ P ] 

⎤⎥⎥⎦
n (A.4) , R y and r y are replaced with 

̂ R y and ̂

 r y estimates formed 

y using ̂  r y [ k ] = 

1 
L 

∑ L 
l=1 ̂

 r y l [ k ] , where ̂  r y l [ k ] = 

1 
N 

∑ N−1 
n = k y l [ n ] y 

∗
l 
[ n − k ]

or k = { 0 , 1 , . . . , P } and l = { 1 , 2 , . . . , L } , and ̂

 r y [ −k ] = ̂

 r ∗y [ k ] . Replac-

ng a with a ini , the initial value of σ 2 
v is the LS solution of

 ̂

 R y − σ 2 
v I P ) a 

ini = −̂  r y for σ 2 
v 

σ 2 
v ) 

ini = 

R 

{ 

(a ini ) H ( ̂  r y + ̂

 R y a 
ini ) 

} 

‖ a ini ‖ 

2 
, (A.5) 
12 
here R { ·} denotes the real part of its argument, see [17, 

q. 46] and [25, Eq. 23] for the real-valued AR process. Using YW 

qs. (A .2) and (A .3) for k = 0 , the initial value of σ 2 
ε is calculated

s 

σ 2 
ε ) ini = ̂

 r y [0] + (a ini ) T ̂ r ∗y − (σ 2 
v ) 

ini = ̂

 r y [0] + ̂

 r H y a 
ini − (σ 2 

v ) 
ini . 

(A.6) 

For the initialization of σ 2 
ε and σ 2 

v , another suggestion can be 

ade by assuming that (σ 2 
v ) 

ini = (σ 2 
ε ) ini and following the ap- 

roach for the estimate of ̂  σ 2 
ε = 

1 
N x 

H R 

−1 
f,N 

x given in Candan [6] such

hat (σ 2 
v ) 

ini + (σ 2 
ε ) ini = 

1 
LN 

∑ L 
l=1 y 

H 
l 

R 

−1 
f,N 

(a ini ) y l . Thus, we have 

σ 2 
v ) 

ini = (σ 2 
ε ) ini = 

∑ L 
l=1 y 

H 
l 

R 

−1 
f,N 

(a ini ) y l 

2 LN 

. (A.7) 

If the measurement noise variance σ 2 
v is known, say the un- 

nown parameter set reduces to � = { σ 2 
ε , a } from � = { σ 2 

v , σ
2 
ε , a } ,

hen the true value σ 2 
v can be substituted for (σ 2 

v ) 
ini in 

σ 2 
v ) 

ini + (σ 2 
ε ) ini = 

1 
LN 

∑ L 
l=1 y 

H 
l 

R 

−1 
f,N 

(a ini ) y l and we get (σ 2 
ε ) 

ini = ∑ L 
l=1 

y H 
l 

R −1 
f,N 

(a ini ) y l 
LN − σ 2 

v . 

The initialization methods are summarized in Algorithm 4 . 
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