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ABSTRACT

Maximum likelihood autoregressive (AR) model parameter estimation problem with independent snap-
shots observed under white Gaussian measurement noise is studied. In addition to the AR model param-
eters, the measurement noise variance is also included among the unknowns of the problem to develop a
general solution covering several special cases such as the case of known noise variance, noise-free snap-
shots, the single snapshot operation etc. The presented solution is based on the expectation-maximization
method which is formulated by assigning the noise-free snapshots as the missing data. An approximate
version of the suggested method, at a significantly reduced computational load with virtually no loss
of performance, has also been developed. Numerical results indicate that the suggested solution brings
major performance improvements in terms of estimation accuracy and does not suffer from unstable AR
filter estimates unlike some other methods in the literature. The suggested method can be especially
useful for small-dimensional multiple-snapshot noisy AR modeling applications such as the clutter power
spectrum modeling application in radar signal processing.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Autoregressive (AR) modeling of random signals is being used
in many areas associated with the statistical signal processing
[1] such as radar signal processing, speech processing and biomed-
ical signal processing [2-5]. The richness of application venues for
AR models can be attributed to their success in representation and
also to the availability of efficient methods for model parameter
estimation. In this work, we consider the parameter estimation of
AR processes observed under white noise. Our main goal is to ex-
tend the maximume-likelihood like AR model parameter estimator
developed for a single noise-free snapshot in Candan [6] to the op-
eration with multiple snapshots corrupted by white noise. A com-
putationally efficient version of the suggested method is also pre-
sented.

Model parameter estimation of an AR process observed under
noise (noisy AR parameter estimation problem) is prone to esti-
mator bias and statistical efficiency problems when modeling as-
sumptions are not carefully taken into account. For example, AR
parameter estimates obtained from Yule-Walker (YW) equations
are typically biased due to the bias of the zero-lag term of the
autocorrelation introduced by white noise [7]. Furthermore, when
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the variance of the noise corrupting the AR process is not known,
an asymptotic Cramér-Rao bound (CRB) study by Weruaga et al.
reveals that the joint estimation of the autoregressive signal vari-
ance and noise variance is not a well-conditioned problem [8,9].
In spite of these setbacks, several practical solutions have been
developed for the noisy AR parameter estimation problem in the
literature. For example, since the autoregressive moving average
(ARMA) model also characterizes the noisy AR processes, it is pos-
sible to apply ARMA modeling approaches such as the maximum
likelihood [10], the modified YW [11] or the recursive prediction
error [12] for the solution of noisy AR parameter estimation prob-
lem. In addition, a number of improved least-squares (LS) solu-
tions are suggested to compensate the bias on the parameter esti-
mates due to the measurement noise [13-15]. The main challenge
for the bias compensating solutions is the estimation of the mea-
surement noise variance. The solutions based on the eigendecom-
position [14] and the inverse filtering coupled with YW equations
[15] have been suggested for this purpose. Among other solutions,
we can list a subspace based solution [16], an errors-in-variables
approach utilizing both low and high order YW equations [17],
a nonlinear optimization (for the estimation measurement noise
variance) solution [18], a solution with two interacting Kalman fil-
ters [19] and some adaptive filtering type solutions [20-22]. A par-
ticularly interesting solution is the method presented in Gabrea
et al. [23], based on the approach developed by Mehra [24], that
avoids the estimation of the process and measurement noise vari-
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ances. Recently, four novel methods have been proposed in Esfan-
diari et al. [25]. The first one utilizes the null space of AR param-
eter vector, the second one solves a constrained LS problem, the
third one reduces the parameter estimation problem for an AR(P)
process to a problem of estimating two parameters and the fourth
one is based on the eigendecomposition of enlarged autocorrela-
tion matrix.

The main aim of this work is to study the noisy AR parameter
estimation problem in the presence of multiple independent snap-
shots. We solely focus on the parameter estimation problem for
the scalar AR processes, that is the vector-AR processes, in which
the regression (recursion) involves a linear combination previous
vector-outputs and current input-vector [26], are not within the
scope of this study. We apply the expectation-maximization (EM)
method [27] by assigning the noise-free snapshots as the missing
data to develop a solution. In the maximization step (M-step) of
EM method, we transform the AR parameter estimation problem
into a form that can be solved by using an approach similar to the
recent work in Candan [6] which is a two-stage method utilized
for AR parameter estimation for a single noise-free snapshot. For
the calculation of the expectation step (E-step), we describe an ap-
proximate, yet highly efficient, method for the computational load
reduction.

The EM method has been previously applied for the solution
of noisy AR parameter in Deriche [28] and some computational
simplifications in the M-step have been suggested. Different from
[28], we formulate the M-step such that it is possible to extend
the maximum likelihood like estimator given in Candan [6] to the
multiple snapshot setting and also describe some novel computa-
tional load reduction methods for the E-step. In [29], a related EM-
based method utilizing Kalman filters is presented for the colored
Gaussian noise. It is well known that the performance of EM al-
gorithm is sensitive to the initialization, that is EM iterations can
converge to a local maximum, instead of the global maximum, due
to a poor initialization [30]. In this study, we present an initializa-
tion method for the suggested method (see Appendix A), consider
the cases of known/unknown measurement noise variance individ-
ually and present detailed comparisons with the alternative esti-
mators and CRBs derived in Weruaga and Melko [8], Weruaga and
Dimitrov [9].

In the literature, there are several works, including [31-33],
which are based on the Whittle likelihood [34], a frequency-
domain approximation to the exact likelihood function. While
Whittle likelihood maximization is computationally easier, the re-
sulting parameter estimates with finite sample sizes are biased es-
pecially for short data records [33]. As the sample size increases,
time- and frequency-domain solutions yield similar results [35].
Further discussions on time- and frequency-domain approaches
can be found in Weruaga and Dimitrov [9]. In this study, we fo-
cus on time-domain approach in relation with our main goal of
extending the maximum likelihood like estimator in Candan [6] to
the noisy, multiple snapshot setting.

The AR modeling has several important applications in speech
processing area. In this area, the typical data size can be hun-
dreds of samples and frequency domain methods can be utilized
in this large sample-size regime without any performance worries.
In some other applications, such as the radar signal processing ap-
plications, the data size can be much smaller and data collection
mechanism can operate intermittently, in contrast to the continu-
ous data-collection modality in speech processing, leading to mul-
tiple, short data-length (snapshot) observations [36-38]. For exam-
ple, in the clutter (the unwanted echoes received by radar systems
[36]) cancellation application of radar signal processing, the clut-
ter power spectral density is estimated from a collection of snap-
shots [36]. Each entry of the snapshot vector is formed by a radar
pulse return from a particular range cell. The number of trans-
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Fig. 1. AR process samples x[n] corrupted by the observation noise v[n] to form the
observed sequence y[n].

mitted pulses, which is the dimension of the snapshot vector, af-
fects all subsequent radar operations and it can be as few as 10-
20 pulses due to other constraints [39]. For this application, the
structured estimation of the clutter power spectrum from small di-
mensional multiple snapshots becomes a necessity. Some solutions
to this problem, in addition to the examined maximum likelihood
solution, are the multiple-snapshot version of the Burg’s method
[37] or the multiple-snapshot version of any other AR parameter
estimation method given in Stoica and Moses [40]. In this study,
we consider the AR parameter estimation problem specifically for
small-dimensional multiple snapshots and pursue an exact time-
domain maximum likelihood parameter estimation solution.

The main contributions of the study are as follows: 1. Express-
ing the conventional EM formulation as a multiple-snapshot, noise-
free AR parameter estimation problem (Section 2.1); 2. Extension
of efficient single snapshot noise-free AR parameter estimation
given in Candan [6] to the multiple-snapshot case and its appli-
cation in the solution of EM problem (Section 2.2); 3. An approx-
imate, but efficient version of the proposed solution by utilizing
a matrix inversion free Kalman smoother [41, Sec. 5.2.4] and the
Gohberg-Semencul formula [40, Sec. 3.9.4] (Section 2.3).

The notation utilized in this paper is as follows: Scalars, column
vectors and matrices are denoted by italic lowercase, boldface low-
ercase and boldface uppercase letters, respectively. The conjugate,
transpose, conjugate transpose and inverse operators are denoted
by ()*, ()T, ()" and (-)~1, respectively. The density of the zero-
mean complex-valued (circular symmetric) white Gaussian noise
with variance o2 is denoted by CA(0,02). Iy denotes the N x N
identity matrix and j =+/—1. Oy and Oy, denote the N dimen-
sional column vector and the N x N matrix, respectively, with all
entries being zero. Euclidean norm and trace are denoted by || - ||
and tr(-), respectively. For a scalar c, |c| is the absolute value of c.
For a square matrix S, |S| is the determinant of S. The n’th en-
try of the vectors x and x, are denoted as x, and Xx,,, respec-
tively. For a positive integer P, Xy pnyp = [Xen Xeng1 - Xengp )’
and X, p:_1:n—p = [Xe.n Xen—1 - -- Xen—p |7 The i'th row and j'th col-
umn entry of matrix M is denoted as [M];;.

2. Noisy AR parameter estimation problem

Consider the transfer function, given below, for the generation
of AR(P) process

Oc _ Oc
1+azl+az2+...+apz? ™~ A(2)’

H(z) = (1)
where aq, a,, ..., ap can be either the real- or complex-valued con-
stants, and o is a real-valued constant scaling the input.

The filter H(z) is assumed to be excited with zero-mean,
unit variance complex-valued (circular symmetric) white Gaussian
noise as shown in Fig. 1. The filter H(z) is assumed to be stable so
that x[n] in Fig. 1 is a wide-sense stationary process. The output
of the filter at steady-state is denoted as x[n]. The I'th snapshot
vector x; with dimension N x 1 is formed by concatenating con-
secutive x[n] samples. It is assumed that a total number of L snap-
shot vectors are collected where each snapshot is independent and
identically distributed (iid) Gaussian vector.

The autocorrelation matrix of the snapshot x; is denoted as
R= Rf_Noez where Ryy is an N x N Hermitian Toeplitz matrix
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whose first column entries are r¢[k] = E{x[n]x*[n — kl}/o2 for k =
{0,1,...,N-1}:
r¢[0] re[—1] ri[-N+1]
Ry = rf[.l] rf[‘O] .. . rf[—I\‘J +2] ' )
FIN-1] N 2] rf[0]

In this study, it is assumed that snapshot vectors are observed un-
der independent additive white Gaussian noise, i.e., the I'th ob-
servation vector is y; = X; +v; as in Fig. 1, where v; vectors are
an iid circular symmetric Gaussian distributed vector with zero-
mean and covariance matrix oZly. Hence, the sample signal-to-
noise ratio is SNR = o¢ rf[O]/a2 The general AR parameter esti-
mation problem is the estimation of ® = {02, 02,a}, where a=
[a1a, ... ap]T, given the observation vectors y;, [ ={1,2,...,L}. If
the noise variance o is known, the unknown parameter set re-
duces to ® = {02, a}. For this case, the true value for the noise
variance can be substituted for its estimate in the formulation
given below. If the noise variance is known to be zero, the problem
becomes AR parameter estimation with multiple noise-free snap-
shots. The solution of this problem can be retrieved as the limiting
case of the discussion as 2 — 0.

2.1. EM formulation for noisy AR parameter estimation with multiple
snapshots

For the solution of the problem, we apply the expectation-
maximization method. To do that, we define N x L matrices X =
[X1...x], Y=[y;...y.] to denote the noise-free AR process snap-
shots and observations, respectively. The snapshot matrix X is the
latent variable of the problem. The N x 2L dimensional Z = [X Y]
is the complete data matrix. The log-likelihood of complete data

matrix A(Z,®) =log f(X,Y) = log f(Y|X) + log f(X) can be writ-
ten as

! ly: = %2 IRy
A@Z 0)=— Z Nlog(o,,z)+1071+log(|02RfN|)+ fN

v

(3)

where first two and last two terms of summation correspond to
the terms log f(Y|X) and log f(X), respectively. The symbol < de-
notes the equality of both sides apart from constant terms.

The EM method has two steps: In the expectation step, the
expected value of complete log-likelihood is calculated with re-
spect to the posterior density of the latent variables. The expecta-
tion operation can be written as J(®) = E{A(Z, ®)]Y, ®°ld} Here
@old _ {(02)Old ((72)Old a%ld} are the current estimates for the
unknown parameters to be updated. In the second step, the expec-
tation result is maximized with respect to the unknown parame-
ters, ®M€W — argmaxg J(®), to update the unknown parameters.
The algorithm is initiated with a proper @0ld value for the im-
plementation of the first step (posterior calculation) and iteratively
run by using ®@"€W of an earlier iteration as the ©°1d of the next
iteration until the convergence of the estimates.

To execute the expectation step, we need the posterior density
of latent variables, f(x;|y;), | ={1,2,...,L}. It is well known that
the posterior density f(x;|y;) is the Gaussian vector with mean
vector X; and covariance matrix K given as

% = (02)°1R;(@°14) ((02)014R; y @°1) + (02)0Md1y) 1y,
K= (GEZ)OIde,N(aOId) _ (O.;l)Olde’N(aOId)((Ug)olde’N(aOld)

+(oﬁ)°‘dln)qkf,N<a°‘d>. (4)
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Taking the expectation of the complete log-likelihood function
n (3) with respect to the posterior density results in J(®) =
E{A(Z.©)|Y, ©°ld}

L 2 112
— tr(K
J(oﬁo&a)é—Z{Nlog(oﬁ>+”y’ a0
I=1 %
xt R];}Vi, + tr(R;}VK)

2
o¢

+log(|o2Rpn|) +

which completes the first step (expectation step) of EM method.

The maximization step of EM starts with the partial derivative
calculation of J(62, 02, a), given in (5), with respect to o2. Setting
the result equal to zero, we get the update expression for the mea-
surement noise variance o2 estimate

Ltr(l() + Zf:] ||YI _/)ZIHZ (6)
LN ’

Similarly, by taking the partial derivative of J(o2, 02, a) with re-
spect to 02 and equating the result to zero, we get the update ex-
pression for the process noise variance o2 estimate

(UZ)HEW

Ltr(R; LK) + YL, RIR 1% )
LN
Substituting (0;2)"®W and (62)M€W given in (6) and (7), respec-

tively, into (5), we get the compressed expected log-likelihood
function as

JUoHNW, (a2)NeW, a) <
L

—Nlog Ltr(RfNK)+ZxHR’ , (8)
=1

2ynew _
(a2)"€

—log |Rf |

where R;y is a function of unknown parameter vector a=
[aya; ... ap]". The maximization of (8) with respect to a is more
challenging than earlier steps and is the main challenge of the
problem. Fortunately, by expressing Ltr(R}_}VK) as a quadratic term,
the function (8) can be converted into a form similar to that of sin-
gle noise-free snapshot case given in Candan [6] and the approach
given therein can be utilized to maximize (8) with respect to a.
To express Ltr(R}}VK) as a quadratic term, we introduce the

eigendecomposition of covariance matrix l(:Z’,;’=1 Anenell into
the problem. Here A, and e, is an eigenvalue and associated unit
norm eigenvector of matrix K. It should be noted that we can
find an orthonormal set of the eigenvectors e,, since the ma-
trix K is Hermitian. With the eigendecomposition it is possible
to express tr(RE}VK) as tr(RE}VK) YN AnefR fNen By introduc-
ing the scaled versions of eigenvectors e, as €, = \/LAqe,, We can
further simplify this expression to Ltr(Rf K) = Zn 1eHRfN

Hence, the maximization of compressed likelihood relation in (8) is
equivalent to the following minimization problem

N L
anew _ argmm log Rynl+log [ > &R (& + ) X'R;)
n=1 1=1
1 Lo=L+N
= argmin N log [Ryy| +log| > fiR \@f; |. 9)
a =1 '

In the second line of (9), we combine the sums in the argument of
logarithm by augmenting the set of X; vectors | = {1,2, ..., L} with
e, vectors n = {1,2,..., N} to form a set of vectors with L, =L+ N
elements where f;_, = €.

Assuming that the solution of optimization problem in (9), that
is a®W s available; the remaining unknown parameter can be
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estimated from (7) as
Ltr(R; ) @"€W)K) + Y xR @)%,
LN
_ XL R @R, (10)
- LN '
Hence, the crux of the parameter problem is the solution of opti-
mization problem given in (9).

When compared with the minimization problem in Candan |[6,
Eq. 11] having the cost function of J log|R; | + log(xHRE}Vx), we
see that cost function of the minimization problem in (9) differs
from the earlier one with the inclusion of L; = L + N snapshots in-
stead of a single one. We present the details for this extension in
the following section. We reiterate that some of the snapshots in
this formulation are generated from the eigendecomposition of K
matrix and augmented to actual snapshots, called observation vec-
tors, to facilitate a solution similar to the one in Candan [6]. In
Section 2.3, we present a reduced complexity implementation al-
ternative for this solution. Different methods of initialization for
the EM method are provided in Appendix A.

(o2)heW =

2.2. AR parameter estimation problem with multiple noise-free
snapshots

The method in Candan [6] is an efficient method for AR pa-
rameter estimation which is developed for a single snapshot un-
der the noiseless observation scenario. This method can be consid-
ered as an alternative for numerical search based maximum like-
lihood estimator having much higher complexity and it is shown
the method performs very similar to the maximum likelihood esti-
mator in many scenarios. In this section, we present the multiple-
snapshot extension of this method.

2.2.1. First stage: weighted forward-backward prediction with L,
snapshots

Following [6], we ignore log|Ryy| term in (9) and use the
weighted forward-backward prediction method to generate the
first stage estimate of a, agg, as follows:

L, [N-P N
apg =argmin ) | > wy[n]le,,[n]l* + Y wyln]le, f[n]|* ).
2 =1 \n=1 n=pP+1
(11)
where ebf[n] = fen+ anz,n—l:—l:n—P and epln] = fon+

al'f, ;. 1.np are the forward and backward prediction errors
with weights wg¢[n]=n—-P and wy[n]=N-P+1-n, respec-
tively. The problem in (11) can be solved by introducing the linear
equation systems, A, fa =—b, ; and A,pa=—b,, for £ =1,..., L,
given below, generating the forward and backward prediction
errors:

fep fer- fer 7] [an] [ fop
ferpi fep cee fe2 az fepi2
fen-1 fon—2 fen-r| Lap ] | fen
S——— ———
A f a b, s
fz*,prﬂ fZmez fl*,N q[an] [ fz*.pr
% % % %
fivee finepn fina az ¢.N—P-1
£ fis fipead Lar L fiy
S—— ———
Aip a b,
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Using the introduced matrices, the final result of the first stage
becomes

-1
Lq
aps = —| D_ (AT WA, s + AngAU’))
=1
Lq
> (A} wb, ;+ A, Wb, ;) |, (12)
=1

where W is the diagonal matrix with the diagonal entries of w¢[n]
forn={P+1,P+2,...,N}, ie,

2.2.2. Second stage: maximizing likelihood around apg

The second stage takes into account the term log Ry y| in (9),
[6]. The nonlinear function is expanded into Taylor series at the
operating point of a = ars and a quadratic approximation for both
terms of the sum forming the cost function of (9) is formed. We
note that both |Rf,N| and Rf}v are highly nonlinear functions of a.

For the quadratic approximation of log|R;y|, we can fol-
low the procedure given in Candan [6, Eq. 11]. The procedure
utilizes the expression |Rjy|=|Rfp|= ]‘[le(] — |k;|®)~ for N>
P, Hayes [1], Kay [42] that connects the autocorrelation ma-
trix determinant of an AR(P) process to the reflection coeffi-
cients k = [ky ky ... kp]T of its synthesis filter. The log-determinant
log Ry n| = — Zﬁ; ilog(1 — |k;|?) is approximated via Taylor series
at the expansion point of the reflection coefficient vector k that
corresponds to the first stage estimate ars and introducing a per-
turbation vector 8y as in Candan [6, Eq. 16].

For the quadratic approximation of Zﬁ": , fi'lR ¥ }Vfg, we can use [6,
Eq. 21] directly

Lo Lq
Y OERE =D (Ibe1 + Mo (G + G |12

=1 =1
b2 + M2 (G8 + Gedi) 1), (13)

where M, ; and M, , are Hankel and Toeplitz matrices, respectively,
with the definitions of

C fi, fis i fipiT
fis fia Bis o Sipa
Ma=lpo, fiy 0 . 0 :
iy 0 0 .. 0
0 0 0 . 0
— = NxP
(fon  fona1 fone Sen—ps1
0 fen  fena fen-pi2
0 0 fen Sen-py3
M= . : : . : ’ (14)
0o 0 0 ... fix
— PxP

b, =f; .y +Magg and b, ; = M, ;agg are constant vectors. The
matrice§ G and G, are the P x P Jacobian matrices having entries
[G];; = g—;’; and [Gc];j = % evaluated at the expansion point of
agg and (G8y + Gc8y) is the perturbation vector for apg such that
k + 8y is the reflection coefficients corresponding to apg + (Gdy +
GCS;‘(). These matrices can be efficiently calculated via the inverse
Levinson-Durbin recursion, as given in Candan [6, Algorithm 2].

By the Taylor series expansion of log(A + Bx) ~ log(A) + %x for
|x| < 1, we can approximate the second term of (9) as

Lq
log )" f?R}t}Vfg ~ log(A)
=1
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43 by + My (G + Gedi) |” = 11|

A
=1
= |lbyy + My (G + Gedi) |12 — [[by 2 |12
- n : (15)
=1

where A=Yl (Ilbg1 ]2 = b, 2[1?) is the value when & is re-
placed by all zeros vector in (13). Hence, A = 22‘1:1 fIZR;}\](an)fg,
and ff’R}_}V(aFS)fg can be efficiently calculated by using [6, Algo-
rithm 1], without even constructing Ry y.

Following the step of optimization, we reach the following
equation system for the solution of &, and Jy, which are pertur-
bation vectors for the complex-valued reflection coefficients corre-
sponding to the initial reflection coefficients k generated from agg.

Q1+§1 Q2+§2 55 _ 1’1+fl (16)

QG+Q Qi +Q | r+r
In the last equation, we have

(G"PG.)" + GI'PG (G"PG)” + GI'PG.

l - ﬁ’ - ﬁ’
N (G”v)* +Ghv .
= (17)
where P=Y"!, (MH M,y — MM, ) and v=

ke (M{ b, —Mf,b, ). The matrices Q; and Q, are di-
i(k¥)?

agonal matrices entries [Q]]ii=m
—I%

and [Qy];= W and
ikt . .

N(1+’<i|2)’ i={1,2,...,P}. In (16), the gradients of the

quadratic approximation of 4 log|R; | and log Zé“zl f’ZR;}Vf{ with

with  diagonal
I =[T1.1 ra...Mp ]T with

=

respect to 8y, which can be expressed as Q8 + Q;dy +r; and
Q38 + Q; 8y +T;, respectively, are utilized, as derived in Candan
[6].

For the real-valued processes, the reflection coefficients are also
real-valued, i.e., & = 8y, and hence, (16) can be simplified as

Qi +Q +Q +Q)d = — (11 +T1). (18)

The proposed method for AR parameter estimation from multi-
ple noise-free snapshots is outlined in Algorithm 1 . It should be
observed from Algorithm 1 listing that the second stage is itera-
tively applied by using the previous iteration result as the initial
point of the following iteration.

2.3. An efficient implementation for the suggested solution

The expectation step of the suggested method requires the in-
version of an N x N matrix for the calculation of posterior density
parameters, i.e., mean vector and error covariance matrix in (4).
In general, the observation vector length (N) is much greater than
the order of AR process (P), and the implementation cost of the
expectation step becomes a computational bottleneck. In this sec-
tion, we present four approaches to reduce the computational load.
We start with the disturbance smoother, a variation of the Kalman
smoothers which does not require any matrix inversion for the es-
timation of the mean vector in the present problem set-up [41,
Sec. 5.2.4].

2.3.1. Efficient calculation of the mean vector

It is well known that the Wiener filtering operation, which is
the operation implemented with the equation set (4), coincides
with the Kalman filtering for the processing of a wide sense sta-
tionary input, with rational power spectral density, corrupted by
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Algorithm 1: Suggested AR parameter estimation for multiple
noise-free snapshots.
Input : X=[x:Xy...X.], P
Output: 3,
// The first stage estimation by using L; =L and
fi=x;, 1={1,2,...,L} for (12)

s = (Sl (A WA, ; +AF, WA, ) )
(e, (AW, s + A, Wb, ) )

// The second stage estimation by using L; =L and
fl =X, l:{1,2,,L}
2 a°ld = aFfs
3 for iteration < 1 to 10 do
// the loop with 10 iterations yields a good
performance, see [6]
4 | k=atog([1 @],
recursion, [1, p. 236]
5 | if X is real-valued then
6 | Solve (Q; +Q; + Q2+ Q)8 = —(r +T1); // See (18)

-1

// atog(-): Step-down

else
QU+Q Q+Q[d r+T .
8 Solve = = sl=— . = //S
[Q; QG Q +Q}‘] [Sk v+ *
(16)

9 k =K+ d; // Reflection coefficients update
10 [1 @e")T|T = gtoa(k); // gtoa(-): Step-up recursion,
[1, p. 233]

1 aold — anew

2 1 L HR—1 .

12 (08)"Y = x>, 8 Rf,N(a“e"")fg,

calculated via [6, Algorithm 1]
Return: a = a"Vv, 52 = (o 2)"W

// fIZRf_}v @""™f, is

independent measurement noise, Hayes [1]. To facilitate the recur-
sive calculation via the Kalman smoothing, we introduce the fol-
lowing state space model:

x[n] -
xn—1] _a?ld _agld _ag)ld —a,?ld
x{n —2] 1 0 0 0
_ 0 1 0 0
x[n—P+1] 0 0 1 0
—_—
Sy A
rx[n—1] [ (o, )0ld]
x[n - 2] 0
x[n — 3] 0
. + . Wh,
X[n _ P] 0
- - —
Sn—1 b
yn = [1 O 0] Sn + Un, (19)
—~—

c

where wy, yn and v, denote the process noise w[n|, the measure-
ment y[n] and the measurement noise v[n], respectively.

Table 1 gives the disturbance smoother equation for the state
space model of (19). The disturbance smoother is a three-pass op-
eration, where in the first pass the Kalman filtering is applied in
the forward direction, the disturbance is estimated in the second
pass and the smoothed state vector is formed in the last pass,
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Table 1

The disturbance smoother implementation of the Kalman smoother (also see [43]).

State Equation:

Input:
Output:
Kalman Filtering:

Backward Smoothing:

Smoothed State Vector:

sp =As,_1 +bw,, (w,~CN(0,1))

Yn = CSu + U, (n ~ CN(0. (02)01d))
yo,n=1,2,... N
¢S,y (first element of §,y), n=1,2, ... .N

S=[0...0]", Py = (02)%1R; v (a0ld),  (see (2))
forn=0,1,..., N-1

§n+1\n = Agn\nv Pn+1\n = Apn\nAH + bev

€ni1 =Yni1 — c’s\nH\n’

Yyl = cpn+1|ncH + (UI/Z)OIdv

Hp = Pn+1|ncHVn7+]1,

§n+1\n+1 = §n+1\n +Hpy1€n41,

Pt = Popain — Hop1 Poqns

A,H] =A- AH,H] C.
Pn-1 = CHGNVﬁlv en_iv =bfpyy,
forn=N-2,N-3,..., 1

pn=clep V,,:L + AIJ_Hp,,H, En\N =bl'p,.
Siv = Pojo(cery T + Alpy),
forn=2,3,..., N-1
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Suiv = AS,_q v + ben_yv,

SNIN = S|N-

Cappe et al. [41, Sec. 5.2.4]. The passes do not involve any matrix
inversion operation. Hence, the mean vector calculation cost is ef-
fectively reduced from the N x N matrix inversion cost to the order
of N complex multiplications. The computational savings becomes
very significant when N > 100.

2.3.2. Approximating error covariance matrix

The matrix K in (4) corresponds to the error covariance ma-
trix of the Wiener filter estimate. Unfortunately, it is not possible
to retrieve an N x N dimensional error covariance matrix from a
Kalman filtering implementation. To avoid the calculation of K ma-
trix, we examine the limiting case of N — oo that corresponds to
the infinite impulse response (IIR) noncausal Wiener filtering op-
eration, Hayes [1, Sec. 7.3]. As N — oo, the error covariance ma-
trix approaches to a Hermitian Toeplitz matrix whose first col-
umn is sufficient to characterize the complete matrix, Gray [44].
For the filtering application with the noncausal IR Wiener filter
(HHR'NC (z)), the error autocorrelation sequence can be expressed
as re[k] = (crvz)OIthR‘NC[k], where hIIR-NC[k] is the impulse re-
sponse of the noncausal IR Wiener filter. We suggest using the
residue theorem to evaluate the inverse z-transform of HIIR-NC (2)
for the calculation of error correlation sequence:

(o2)°ld

re[k] = I

7§ HIRNC ()71, k—{0.1,....P},
C:|z|=1
(20)

where HHR—NC(Z) — (0.62)01(1/((0.62)01(?1 4
(o2)0ldg0ld () (40ld (17+))*) Hayes [1, Sec. 7.3] for A°ld(z) =
1+ a?ldz‘1 + agldz‘2 +..F a,?ldz"’. We suggest calculating only
P+ 1 error correlation lags given in (20) and constructing K as a
banded matrix with P nonzero super/sub-diagonals.

2.3.3. Efficient calculation of tr(RE}VK)

The compressed likelihood function in (8) requires the calcula-
tion of tr(RE}]K), where RfN depends on the optimization variable
a and K is a constant matrix. This problem has been suggested
to be solved by an eigenvalue decomposition of K and express-
ing tr(RJ:_}VI() as a sum of quadratic terms. We present an efficient
method that avoids the computationally costly eigendecomposition
step.

Ii/\/e utilize the Gohberg-Semencul (GS) formula from [40,
Sec. 3.9.4] for the inverse of Ryy. The GS formula states that

R;}V = AAY — A,AY, where
1 0
a, 1
aq 1
A= |ap a 1 )
0 ap
]
| 0 0 ap a 1]n
- 0 0
0
0 0
A= | g (21)
ap_y  Gp
La; ... gy g 0 ... Ofyn
By defining a shift matrix S as
0 0
1 0
s=(0 1 . ,
6 O' 1. 0 yun
A; matrix can be expressed as A; = [a, |Sa, |S%a,| ... |SN"Ta,],

where a, denotes the first column of A; matrix from (21) and Ska,
is the (k+ 1)’th column formed by shifting a; vector k times. We
also define A, = [a} |Sa}|S%a; | ... |SV~a} |, where aj is the first
column of A, matrix. Using these definitions, tr(Rf,}vK) can be ex-
pressed as

tr(R; \K) = tr((A;A] — A,AY)K)
= tr(A{KA;) — tr(AYKA;)
N-1 N-1
=al[ > ($HHKS* |a, —af( > (sH)PKS* |a;
k=0 k=0
=allva, —alvaj, (22)
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where V = Y (S)#KS¥. Hence, tr(Rf}V
of the unknown parameters.

K) is a quadratic product

2.3.4. Efficient calculation of optimal perturbation around agg
The objective function (8) to be maximized involves |Ryy| and

Ltr(R K + Zz 1i”Rf Nx,, where the elements of matrix Ry are
the functlons of vector a. While the determinant of Ry can be
written as a quadratic product of the reflection coefficients cor-
responding to the vector a, the other reduces to quadratic prod-
uct in terms of a. Following the approach given in Candan [6],
we convert the problem domain to the reflection coefficient do-
main and treat a as a vector-valued function of the reflection
coefficients, and then, we expand it into a Taylor series around
the reflection coefficients derived from the first stage result (agg)
and keep only the first order term, i.e. the Jacobian term, in
the expansion. In brief, for tr(RE}Vl()zaﬁVa+—a,TeVa,’g, we ex-
press the unknown vectors as a; = agg | + G, 8 + G o0y and ag =
Apg p + GRSk + Ggcdy, where apg =1 alT:S 0l , 1" and Apg =
[0} FSP 11]7. The vectors §, and its conjugate 8y denote

the unknown reflection coefficient perturbation vectors following
the approach in Candan [6]. The matrices G., Gic, Gg and Gg.
are the Jacobian matrices, for the vector-valued functions agg

and apg p in terms of their reflection coefficients, with the def-
initions of G =[0p G Op, (v_p_1)1". Gic=[0p G Op, (y_p_1)]".
Gr=[0p,(v_p) G'|T and Ggc =[0p, (y_p) GI 1", where G and G
are the Jacobian matrices corresponding to apg, as defined in the
description of (13); [Gl;j = [Gl,; and [Gcl;; = [Ge]pj for p=P —i+
1 and i, je{1,2,...,P}. With these definitions, the gradient of
al'Va, with respect to 8y can be given as Q38 + Q3c8y + r3 with
Qs = GHVG, + (GH.VG,0)*, Qs = GHVG, + (GH.VG,)* and 13 =
GVagg . + (G Vagg , )*. Similarly, the gradient of ayVaj, with re-
spect to 8y is Qudy + Qucly +ra With Qq = GEV*G; + (G} V*Gy)*,
Qi = GEV*G% + (GEV*G)* and 1y = GTV*a;S < + (GR .V~ ag. O
Combining the gradient results of tr(Rf’Nl() with the gradients of

terms used for (16), we get the following equation system:

|:Q1 +Q+Qr; Q+Q+ Qtr,2i| |:35§]
Q; + Q§ + Q::r_z Qj]F + Qj + Q;I',l

_ Iy +?] +rtr

where Qg ; = £(Qsc— Q). Qo= 5(Q-Q)* and 1=
L(rs —rg)* with A = Ltr(R}}VK) +3k 1xHRJ:N . In (23), the terms
Q;, Q, and r; corresponding to 1 n log |Rf y| are the same as used in

(16); the terms Q1, Q2 and T; corresponding to Z, 1x, R;le are

calculated as given in (17) by using P = Y, (M,_1M1.1 Mz,le,Z)
and v=Yp, (M b —Mb,), where b ;=% +M,;as,
b; ;, = M, yagg, and the matrices M; ; and M; , are formed by using
(14) with f; =%, [ ={1,2,...,L}.

To determine the optimal perturbation vector for the real-
valued processes, by using the condition §y = 8y, (23) can be sim-
plified as

(Q+Q + Qg +Q +Q + Q)8 = —(r +T1 +1gp).  (24)

To solve the problem of AR parameter estimation with mul-
tiple noisy snapshots, the suggested second stage for the calcu-
lation of tr(Rf}vK) without an eigendecomposition is outlined in
Algorithm 2 . The complete procedure including four cases is given
in Algorithm 3 . In AlUOlithm 3, the first case calculates K matrix
exactly and assumes o2 is known by following Lines 7, 15 and 19;
the second case calculates K matrix approximately and assumes

2 is known by following Lines 10, 17 and 19; the third and fourth

Signal Processing 186 (2021) 108118

Algorithm 2: Efficient calculation of optimal perturbation
around agg.

Input . i = [i] 5(\2 . ;EL ], K, dfs
Output: a"v, (o2)"eW
1 a°ld = dfs

2 for iteration < 1 to 10 do

// the loop with 10 iterations yields a good
performance

3 | k=atog([1 @77,

recursion, [1, p. 236]

a | if X is real-valued then

// atog(-): Step-down

5 Solve (Q1 +Q1 + Qi1 + Q2 +Q + Qr2)dy =
—(r{ +T{ +ry)// See (23), where tr(R‘] K) is
computed by using the GS formula for RfN
6 | else
,; solve |+ Q@ +Qr1 Q+Q+Quy 8| _
X =
G+e+Q, QG+Q+Q;,
L +F1 + Itr 1 .
r +T_ﬂ]ﬁ e // See (24), where tr(Rf,NK) is
computed by using the GS formula for R]:}V
8 k =K+ 8; // Reflection coefficients update
9 [1 @e¥)T|T =gtoa(k); // gtoa(-): Step-up recursion,
[1,p. 233]

10 old — gnew

1 (o2)"eW = ﬁ(Ltr(R @")K) + >F 1XHR’N(a“eW)i,);
// tr(RE}V(a“EW)K) is computed by using the GS formula
for RE}V(a"ew)

Return: a"v, (g2)"ew

cases are similar to the first and second cases, respectively, except
o2 is estimated via Line 21.

2.4. Computational complexity considerations

In noise-free multiple-snapshot case given in Algorithm 1, agg
is computed with O(P3) multiplications in the first stage, and
the optimal perturbation vector & is computed with (’)(P3) and
O(8P3) multiplications for the real- and complex-valued processes,
respectively, in the second stage. In (16), A = Z fHR yfe. which

is required to get Ql, 6_2 and T;, is calculated efﬁc1ently by us-
ing Candan [6, Algorithm 1], which decreases O(N3) operations

to O(NP) multiplications to calculate f”R yfe- The noise-free case
requires L, =L snapshots and corresponds to O(LNP+P3) and

O(LNP+8P3) multiplications per EM iteration for the real- and
complex-valued processes, respectively.

In noisy multiple-snapshot case with the exact calculation
of K matrix given in Algorithm 3, both of the inversion and
eigendecomposition of N x N matrix required in expectation step
of EM and the second part of the maximization step of EM,
respectively, are computed with O(N3) operations. Owing to
Line 15, Algorithm 1 is also utilized for this case with Lg =
L+ N instead of Ls =L corresponding to the noise-free case.
Hence, the overall complexity is O(N3+(L+N)NP+P3) and
O(N® + (L+N)NP +8P%) operations for the real- and complex-
valued processes, respectively, in each EM iteration.

When K matrix is calculated approximately in Algorithm 3, the
inversion of N x N matrix is not required owing to the disturbance
smoother, and the eigendecomposition of K matrix is eliminated
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Algorithm 3: Proposed AR parameter estimation method, also
see [43].

Input : Y=[y1¥5...Y.] P, tmax: the maximum number of
1terat10ns o,, (optional)
Output: 3, 52, 52 (or o if exists)

1 Initialize parameters elold =ain, (062)°4 = (¢2)" and
(02)° = (o2)in by following Algorithm 4

2 for t < 1 to tpax do

// Expectation step of EM, see (4)

3 if exact K calculation is desired then

s || Q= ((02)R; (@) + (02)901) /) NxN
matrix inversion

5 for | < 1to L do

6 X = (oﬁ)"‘de’N(aO'd)Qy,; // Mean vector of the

posterior density f(X;|y;)

7 || K= (02)MRgy (@) — (00RO QR (a);
// Covariance matrix

8 | else

9 Compute X = [X; X5 ... X;] by using the disturbance
smoother; // See Table 1

10 Construct K matrix as a banded matrix with P nonzero
super/sub- diagonals by using P + 1 error correlation

old

lags,re[k] = 271)1 f. e HIIR—NC (2)Z¢-1dz,

k=1{0,1,..., P}, where H"R'NC 2) =
(GGZ)OId/((UGZ)Old + (O-UZ)oldAold (Z)(AOld(l/Z*))*) and
AM(z) =1+ a9z + a4z + .. + Bz P

// Maximization step of EM
// The first stage estimation by using Ls =L and
fi=x,1={12,..., L} for (12)

1
1 dps = (Zl 1 ( WA(f +A WA(,b))
(Zgﬂ:1 (A[.beK.f+A[_bWbé,b))// The second stage

estimation

12 if exact K calculation is desired then

13 K=YN, Ameqel; // the eigendecomposition of
N x N matrix

14 Form the set of L, =L+ N vectors f,, £ =1,2,..., Lg,

where f; =X, [ ={1,2,...,L}, and

fi.n=+ILAnen,n=1{1,2,...,N}

15 Compute a™" and (c2)"" by following the lines from
2 to 12 in Algorithm 1

16 else

17 | Compute a"™" and (62)"" by following Algorithm 2

18 | if o2 exists then

19 | (@) = o

20 | else

a | | @)= (L) + X0, ly -%2)

2 aold _ anew (0.2)01d (O.Z)new and (0.1}2)old (UZ)new

Return a=a"v, 52 = (c2)"V and 52 = (0 2)"W

by using the GS formula for the second stage estimation given in
Algorithm 2. Similar to Algorithm 1, and Algorithm 2 has the com-
plexity of O(LNP+ P3) and O(LNP + 8P3) multiplications per EM
iteration for the real- and complex-valued processes, respectively.

3. Numerical results
We present a performance comparison of the suggested AR pa-

rameter estimation method under different noise conditions in-
cluding noise-free case. The performance comparison of AR pa-
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rameter estimation methods requires an application specific fi-
delity criterion such as spectral peak location, spurious peak avoid-
ance, filter coefficient/pole accuracy, etc. as discussed at length
in Kay [42]. In this study, we use objective metrics such as total
MSE E{||]a — |2}, attained likelihood value and the Hellinger dis-
tance between true and estimated Gaussian random vector densi-
ties. The Hellinger distance between zero-mean Gaussian vectors p
and q with covariance matrices ¥; and X, is given as H(p,q) =

\/1 — | S| VA 25[1/4)| 1 (21 + £5)[1/2, [45]. The Hellinger distance

is a true metric satisfying positivity, symmetry, triangle inequal-
ity axioms. The Hellinger distance is utilized to upper bound the
detection error of equally likely hypotheses p and q with p, <
1/2(1 — H2(p,q)), and used as a robust measure for the distance
between distributions, [46]. All experiments are conducted by us-
ing 100 Monte Carlo runs.

Experiment 1 - Multiple noise-free snapshots: This experiment
compares the likelihood values attained by the estimates of dif-
ferent methods including the forward-backward prediction (FB),
the weighted forward-backward prediction (wFB), which performs
only the first stage estimation presented in Section 2.2.1, and
the numerical search method initialized with the Burg’s method.
For comparison purposes, one of the cases presented in Candan
[6] that is the estimation of the real- and complex-valued AR(6)
parameters randomly generated from the uniformly distributed re-
flection coefficients and o2 = 0.36 for a single snapshot scenarios
is repeated for L = 10 snapshots. The results in Fig. 2 closely fol-
low the earlier conclusions and reveal that the proposed approach
yields likelihood values which are almost identical to the ones at-
tained by the numerical search having much higher complexity.

Experiment 2 - Multiple noisy snapshots: This experiment ex-
amines the estimation accuracy of the method on an AR(4) sys-
tem with A(z) =1+40.1z71 +0.2z72 4+ 0.3z73 + 0.4z~ under unity
measurement noise variance, o2 = 1. The o2 parameter in (1) is
varied according to the experiment SNR. Fig. 3 shows the Hellinger
distance and total MSE (E{||a—aJ|2}) comparisons for different
number of snapshots L, where each snapshot is a vector of length
N = 50. Four estimators, for the cases of K is calculated exactly
or approximately and o2 is known exactly or estimated, are com-
pared. Fig. 3 also includes the estimator performance in the noise-
free scenario. The estimator for the noise-free case has X; =y,
and K= 0y,y. These relations can be also retrieved from (4) as
02 — 0. The asymptotic CRB (ACRB) [8,9] is provided as a perfor-
mance benchmark for total MSE comparisons. The results of a sim-
ilar setup constructed to compare the estimation accuracy for the
complex-valued AR(4) system with A(z) =1+ (0.1+j0.2)z 1+
(0.2 -j0.3)z2 + (03 +j0.1)z73 + (0.4—jO.2)z* and o2 =1 are
shown in Fig. 4.

We note from Figs. 3 and 4 that there is a significant perfor-
mance gap between the cases of known and unknown measure-
ment noise variance. Yet, in both cases the total MSE value for a
vector coincides the ACRB associated with the problem. More de-
tailed numerical results on the real-valued case for SNR of 10 dB
is given in Table 2, where the column labeled as “CRB” is the non-
asymptotic (exact) bound for the problem by numerical differenti-
ation [47, Eq. (3.31), p. 47].

The results shown in Fig. 3 with SNR =0 dB and Fig. 4 with
SNR =0 dB and SNR =5 dB are obtained by initializing the
suggested method with (A.7), instead of (A.5) and (A.6) used in
Algorithm 3. Further details on algorithm initialization is given in
Appendix A.

Experiment 3 - Single noisy snapshot: This experiment com-
pares the estimation accuracy of the proposed method for un-
known noise variance with the state-of-the-art methods, SS [16],
EIV [17], IFILS [15], XZ [18], and four methods (EVK-1, EVK-2, EVK-
3, EVK-4) given in Esfandiari et al. [25]. The experiment is con-
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Fig. 2. Experiment 1 - Multiple noise-free snapshots: Likelihood value comparison for
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Fig. 3. Experiment 2 - The Hellinger distance metric and total MSE comparisons of proposed method at different number of snapshots for the real-valued AR(4) process.
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Fig. 4. Experiment 2 - The Hellinger distance metric and total MSE comparisons of proposed method at different number of snapshots for the complex-valued AR(4).
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9= Noise-free

. 2,
K: exact, o2:

2
v

~e— Noisy, exact

~0= Noisy, K: app., 02: exact

- Noisy, K: exact, 02: est.

5= Noisy, K: app., 02: est.

6
Number of snapshots, L

12 3 45

(c) SNR =10 dB

-0~ Noise-free

[ |-~ Noisy, K: exact, 02: exact

| |-o= Noisy, K: app., og: exact

[ [ Noisy, K: exact, o2: est.
2

{9 Noisy, K: app., og: est.

I |=¢= ACRB, noise-free [8, 9]

| |~e= ACRB, noisy [8, 9]

123456728910

Number of snapshots, L

(f) SNR = 10 dB

The Hellinger distance metric and total MSE comparisons of the proposed method for different sample sizes and number of snapshots on the real-valued AR(4)
process given in Experiment 2 (SNR = 10 dB).

Hellinger distance E{lla—al?}
K: exact K: app. K: exact K: app. K: exact K: app. K: exact K: app. ACRB CRB
N L
o2: exact o2: exact o2 est. o2: est. o}: exact o2 exact o2: est. o2: est. [8,9] o2: exact
50 1 0.7017 0.7022 0.6884 0.6869 0.0946 0.0948 0.0944 0.0938 0.0817 0.0858
0.3624 0.3627 0.3559 0.3551 0.0163 0.0163 0.0164 0.0164 0.0163 0.0165
10 0.2602 0.2604 0.2642 0.2643 0.0085 0.0086 0.0090 0.0090 0.0082 0.0082
100 1 0.7041 0.7043 0.6870 0.6866 0.0420 0.0420 0.0424 0.0424 0.0409 0.0418
0.3799 0.3801 0.4270 0.4272 0.0089 0.0089 0.0099 0.0099 0.0082 0.0082
10 0.2680 0.2681 0.3580 0.3585 0.0043 0.0043 0.0053 0.0053 0.0041 0.0041
150 1 0.6905 0.6906 0.6870 0.6869 0.0280 0.0280 0.0283 0.0283 0.0272 0.0277
0.3794 0.3796 0.4705 0.4706 0.0060 0.0060 0.0078 0.0078 0.0054 0.0055
10 0.2590 0.2591 0.4288 0.4291 0.0028 0.0028 0.0046 0.0046 0.0027 0.0027
500 1 0.7080 0.7081 0.8247 0.8247 0.0087 0.0087 0.0114 0.0114 0.0082 0.0082
0.3652 0.3653 0.7804 0.7804 0.0017 0.0017 0.0048 0.0048 0.0016 0.0016
10 0.2645 0.2645 0.7771 0.7771 0.0008 0.0008 0.0041 0.0041 0.0008 0.0008
1000 1 0.6882 0.6882 0.9210 0.9210 0.0043 0.0043 0.0074 0.0074 0.0041 0.0041
0.3733 0.3733 0.9295 0.9295 0.0009 0.0009 0.0046 0.0046 0.0008 0.0008
10 0.2631 0.2631 0.9222 0.9222 0.0004 0.0004 0.0038 0.0038 0.0004 0.0004

ducted on the single snapshot real-valued AR(4) process defined
in Experiment 2. Similar to Example 1 given in Esfandiari et al.
[25], the parameter settings are as follows: g =2 and & = 0.001
for IFILS; §; =0.01 when SNR =0 dB and §; = 0.001 when SNR
=5 dB or SNR =10 dB, 4, =0.01 and 1 = 0.96 for XZ; g =3 and
6 =0.1 for EVK-1 and EVK-2; g=4 and § =0.1 for EVK-3; g =3

descriptions.)
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and m = 8 for EVK-4. (Readers can consult [25] for the parameter

Table 3 shows that the suggested method using either exact or

approximated error covariance matrix K provides more accurate
AR parameter estimates in terms of Hellinger distance and total
MSE in comparison to other methods by denoting the best attained
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Table 3
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The Hellinger distance metric (first line), total MSE (second line) and the number of unstable system estimates out of 100 runs (third line) comparisons of the proposed
method with other methods for the single snapshot real-valued AR(4) process defined in Experiment 2.

K: exact K: app. SS EIV IFILS Xz EVK-1 EVK-2 EVK-3 EVK-4
N SNR 2 p
o7 est. of: est. [16] [17] [15] [18] [25] [25] [25] [25]
50 0dB  0.8312 0.8315 0.9326 0.9387 0.9402 0.9515 0.9355 0.9441 0.9630 0.8967
0.2520 0.2534 0.6938 0.3245 0.2554 0.3685 0.5761 0.6164 0.6421 0.3814
- - 70 10 13 36 31 35 19 -
5dB  0.7451 0.7446 0.9299 0.8501 0.8589 0.9472 0.8465 0.9359 0.9034 0.8925
0.1156 0.1152 0.3225 0.1777 0.1691 0.2993 0.2921 0.3943 0.4148 0.2310
- - 62 10 8 20 19 22 12 -
10dB 0.6884 0.6869 0.9226 0.8177 0.8109 0.9149 0.7843 0.9057 0.8659 0.9076
0.0944 0.0938 0.2672 0.1486 0.1456 0.2075 0.2017 0.2301 0.3716 0.1888
- - 60 6 11 26 14 14 8 -
100 0dB  0.8558 0.8555 0.9596 0.9535 0.9602 0.9858 0.9606 0.9781 0.9782 0.9259
0.1265 0.1266 0.9673 0.2867 0.2675 0.4038 0.5159 0.6870 0.5805 0.3014
- - 60 10 14 26 15 21 10 -
5dB  0.8297 0.8299 0.9314 0.8687 0.9177 0.9417 0.8595 0.9487 0.9436 0.9623
0.0620 0.0620 0.2090 0.1213 0.1450 0.1772 0.1587 0.2430 0.3508 0.1452
- - 33 4 7 30 10 16 2 -
10dB  0.6870 0.6866 0.9190 0.8027 0.8405 0.9137 0.7917 0.9048 0.8869 0.9755
0.0424 0.0424 0.1943 0.0867 0.0884 0.1860 0.1572 0.2482 0.3240 0.1193
- - 34 1 5 17 8 11 5 -
150 0dB  0.8703 0.8698 0.9594 0.9623 0.9704 0.9703 0.9602 0.9877 0.9752 0.9576
0.0849 0.0848 0.2577 0.1860 0.1711 0.2945 0.4021 0.4964 0.4038 0.2034
- - 46 8 8 29 15 19 7 -
5dB  0.8893 0.8895 0.9351 0.8788 0.9105 0.9286 0.8885 0.9347 0.9432 0.9767
0.0502 0.0502 0.1090 0.0764 0.1030 0.1918 0.1825 0.2439 0.2787 0.1171
- - 19 3 6 16 9 14 7 -
10dB  0.6870 0.6869 0.9291 0.8233 0.8753 0.8919 0.8122 0.8950 0.8914 0.9855
0.0283 0.0283 0.1235 0.0460 0.0668 0.1647 0.1052 0.1628 0.2125 0.0881
- - 23 - 1 15 2 5 3 -
Table 4
The average computational time (in seconds) comparison of the proposed method for different sample sizes and number of snapshots for Experiment 2 (SNR = 10 dB). Rt
denotes the ratio of computational times.
Real-valued AR(4) Complex-valued AR(4)
K: exact K: app. K: exact K: app. K: exact K: app. K: exact K: app.
N L o2:exact o2:exact Rt o2: est. o2: est. Rt o2:exact o2:exact Rt o2 est. o2: est. Rt
50 1 0.2810 0.0372 7.55 0.2802 0.0370 7.58 0.5379 0.0562 9.56 0.5351 0.0552 9.69
0.3008 0.0654 4.60 0.3009 0.0654 4.60 0.5829 0.1083 5.38 0.5812 0.1082 5.37
10 0.3270 0.0941 3.47 0.3270 0.0942 3.47 0.6369 0.1628 3.91 0.6380 0.1638 3.90
100 0.5801 0.0427 13.57 0.5806 0.0428 13.55 1.2242 0.0729 16.79 1.2054 0.0725 16.62
0.6071 0.0810 7.49 0.6072 0.0812 7.48 1.2338 0.1328 9.29 1.2373 0.1361 9.09
10 0.6327 0.1152 5.49 0.6348 0.1151 5.52 1.2879 0.1951 6.60 1.2800 0.1940 6.60
150 0.9734 0.0519 18.75 0.9723 0.0518 18.76 1.9246 0.0811 23.72 1.9184 0.0814 23.58
0.9845 0.0976 10.09 0.9863 0.0976 10.10 1.9972 0.1590 12.56 1.9967 0.1607 12.43
10 1.0143 0.1377 7.36 1.0160 0.1380 7.36 2.0345 0.2273 8.95 2.0287 0.2285 8.88
500 5.6314 0.1071 52.58 5.8269 0.1070 54.48 13.7240 0.1844 74.43 13.7681 0.1850 74.42
5.7710 0.2515 22.94 5.9788 0.2525 23.68 14.2745 0.4096 34.85 14.2137 0.4110 34.58
10 5.9106 0.3766 15.69 6.1155 0.3774 16.20 14.8254 0.6022 24.62 14.7588 0.6093 24.22
1000 1 18.9031 0.2096 90.19 19.0119 0.2093 90.83 48.2300 0.3524 136.88 48.0578 0.3531 136.09
20.2822 0.5896 34.40 20.5374 0.5886 34.89 48.8622 0.8417 58.05 48.3051 0.8422 57.35
10 21.2807 0.9352 22.75 21.6083 0.9370 23.06 51.6543 1.2907 40.02 50.9763 1.2935 39.41

value of performance metrics (the lowest Hellinger distance and
total MSE) with boldface. Table 3 also includes information on the
number of unstable AR systems out of 100 trials. (The results for
SNR = 0 dB are obtained by initializing with (A.7).)

Experiment 4 - Average computational time: This experiment
compares the average computational time (in seconds) of the
proposed method for different sample sizes N and the num-
ber of snapshots L in Experiment 2 set-up with SNR =10 dB.
Table 4 shows that the suggested method with approximate
error covariance matrix K (eliminating the inversion of N x N
matrix via the disturbance smoother in expectation step and
the eigendecomposition via the GS formula in maximization
step of EM) requires significantly less CPU time than the sug-
gested method with exact K matrix. The ratios of average com-
putational times are given in the column of Table 4 labeled
as “Rt".

1

4. Conclusion

An expectation-maximization based solution for noisy AR pa-
rameter estimation problem and its efficient implementation are
given in this study. The heart of the method contains an extension
of the formulation given in Candan [6] for a single snapshot like-
lihood maximization of AR parameter estimation problem to the
multiple snapshots. In addition to this, the current formulation ex-
amines the problem of AR parameter estimation under the effect
of white noise with the unknown variance given multiple inde-
pendent snapshots. A highly efficient, yet approximate, implemen-
tation of the suggested method is also given. The performance of
the approximate version is almost identical to the exact version;
but the approximate version eliminates N3 + N2P multiplications
per EM iteration (N is the snapshot vector length) resulting in sig-
nificant cost savings in both computation and memory. We present
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the ready-to-use MATLAB codes of the proposed method reproduc-
ing the presented numerical results for further exploration in Cayir
and Candan [43].
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Appendix A. Initialization of suggested algorithm

The proposed method requires the initial estimates for a, o2
and o2, see (4). By applying the weighted forward-backward pre-

diction approach on y;, [ ={1,2,...,L}, as done for f, in (11),

¢=1,...,Lg, the initial estimate of a, al™, is calculated as
L 1
il _— _ Z (AﬁfWAl,f +A?bWAI,h)
1=1
> (Al;Wb, ; + A, Wb, ) (A1)
1=1
where
[ yip Yipr-1 Yia [ Vipi1
Yipi1 Yip Yi2 Yipi2
Agp=1 . . P b= . |
LYiN-1  YIN-2 YiN-P | VIN
[Yin-ps1  Yin-pi2 Yin Yin-p
Yiner,  Yiners Yin-1 Yinep_1
A= : : A P T : ,
L Vi2 Yis Yipi L Yia

and W = diag(1, 2, ..., N — P). Then, the initial values of 62 and o}
are determined by using YW equations and al™,

According to the block diagram shown in Fig. 1, the YW equa-
tions for the autocorrelation sequence of the AR(P) process x[n] can
be written as

P
relkl = = " aprlk — pl + 028[kl. k > 0 (A2)
p=1
where rx[k] = E{x[n]x*[n — k]}; and the YW equations for the auto-
correlation sequence of y[n] can be expressed as
ry[k] = ry[k] + 0 28[k]k > 0 (A.3)

which implies that ry[k] = rx[k] for k > 0, [1]. Using (A.2) and (A.3),
we get

(Ry—o/lp)a= Ty, (A4)
where
1y[0] ry[—1] ry[-P+1] ry[1]
ry[1] 1y[0] ry[-P+ 2] 1y[2]
v = : : - : =1
ry|P—1] ry[P-2] ry[0] ry[P]

In (A4), Ry and ry are replaced with R, and ?y estimates formed

by using 7y[k] = 1 Z, 1 Ty [k], where 7y [k] = - N Zn b y,[n]y, [n—k]
for k={0,1,...,P} and | = {1,2,...,L}, and 7y[-k] =T [k] Replac-

ing a with ai“i, the initial value of o2 is the LS solution of
Ry — o2lp)alll = 7y for o2
m{(aini)H(fy +ﬁyaini)}

(0.2)ini — _
”alnl”Z

(A.5)
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Algorithm 4: The initialization of the suggested method, also
see [43].

Input :Y=[y;y; ...y}, P, o} (optional)
Output: ai", (g2)in, (¢2)ini

- 1
L aini - _ (ZL (A{f (WA, ; + A, WA, b))

(ZL] (Af’bez.f +AﬁbWbl4b>)
if o exists then

2

3 ‘ (02)m1 _ 0-2 and (O-Z)ml LN Zl ; yHR—N(alm)yl _ 0-2
4 else R

5 (O.UZ)ini — m{(aini)H(fy + Ryaini)}/”aininz and

(O-EZ)ini -7 [0] 4T aini (O-Z)ini
or (01;2)im = (Uz)lnl = 2]_)\] Zl 1yl HR: ,}\,(aim)Yl

Return: ai", (g2)M, (g2)in

2]

where %{-} denotes the real part of its argument, see [17,
Eq. 46] and [25, Eq. 23] for the real-valued AR process. Using YW
Egs. (A.2) and (A.3) for k = 0, the initial value of o2 is calculated
as

2)11‘11

(A6)

(0.62)11'11 :’Fy[o] + (all'll)T’f; _ (0.1}2)11'11 :’Fy[o] _,'_’lt;lall'll (O_

For the initialization of 02 and o2, another suggestion can be

made by assuming that (crz)lnl (crz)lnl and following the ap-
proach for the estimate of 62 = Nx” x given in Candan [6] such

that ((72)lnl + ((72)lnl b 1VIR N(ami)y,. Thus, we have
S VIR L@y,
(Gz)ml (Gz)ml 2{;\\; (A7)

If the measurement noise variance o is known, say the un-

known parameter set reduces to ® = {02, a} from © = {02, 02, a},
then the true value o2 can be substituted for (o)™ in
ini
(0-2)1I11+(O.2)1I11 — LN Zl 1yl fN(alnl)y’ and we get (0-2) —
b f.N(a'“‘)yz o2
IN T . . .
The initialization methods are summarized in Algorithm 4.

Supplementary material

Supplementary material associated with this article can be
found, in the online version, at doi:10.1016/j.sigpro.2021.108118.

CRediT authorship contribution statement

Omer Cayir: Methodology, Software, Validation, Formal analy-
sis, Investigation, Data curation, Writing - review & editing, Visu-
alization. Cagatay Candan: Conceptualization, Methodology, Soft-
ware, Formal analysis, Writing - original draft, Writing - review &
editing, Visualization, Supervision.

References

[1] M.H. Hayes, Statistical Digital Signal Processing and Modeling, Wiley, 1996.

[2] P. Wang, H. Li, B. Himed, A Bayesian parametric test for multichannel adaptive
signal detection in nonhomogeneous environments, IEEE Signal Process. Lett.
17 (4) (2010) 351-354, doi:10.1109/LSP.2009.2039380.

[3] J. Petitjean, R. Diversi, E. Grivel, R. Guidorzi, P. Roussilhe, Recursive errors-
in-variables approach for AR parameter estimation from noisy observations.
Application to radar sea clutter rejection, in: 2009 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing, 5, IEEE, 2009, pp. 3401-3404,
doi:10.1109/ICASSP.2009.4960355.


https://doi.org/10.1016/j.sigpro.2021.108118
http://refhub.elsevier.com/S0165-1684(21)00156-0/sbref0001
http://refhub.elsevier.com/S0165-1684(21)00156-0/sbref0001
https://doi.org/10.1109/LSP.2009.2039380
https://doi.org/10.1109/ICASSP.2009.4960355

0. Cayir and €. Candan

[4] Y. Shekofteh, F. Almasganj, Autoregressive modeling of speech trajectory trans-
formed to the reconstructed phase space for ASR purposes, Digit. Signal Pro-
cess. 23 (6) (2013) 1923-1932, doi:10.1016/j.dsp.2013.06.011.

[5] M. Aktaruzzaman, R. Sassi, Parametric estimation of sample entropy in heart
rate variability analysis, Biomed. Signal Process. Control 14 (1) (2014) 141-147,
doi:10.1016/j.bspc.2014.07.011.

[6] C. Candan, Making linear prediction perform like maximum likelihood in
Gaussian autoregressive model parameter estimation, Signal Process. 166
(2020) 107256, doi:10.1016/j.sigpro.2019.107256. http://www.sciencedirect.
com/science/article/pii/S0165168419303081

[7] S.M. Kay, Noise compensation for autoregressive spectral estimates, IEEE Trans.
Acoust. Speech Signal Process. 28 (3) (1980) 292-303, doi:10.1109/TASSP.1980.
1163406.

[8] L. Weruaga, O.M. Melko, Asymptotic Cramér-Rao bound for noise-
compensated autoregressive analysis, I[EEE Trans. Circuits Syst. I 59 (9)
(2012) 2017-2024, doi:10.1109/TCS1.2012.2185277.

[9] L. Weruaga, L. Dimitrov, The spectral nature of maximum likelihood noise
compensated linear prediction, IEEE Trans. Audio Speech Lang. Process. 21 (8)
(2013) 1760-1765, doi:10.1109/TASL.2013.2255277.

[10] H. Tong, Autoregressive model fitting with noisy data by Akaike’s information
criterion (corresp.), IEEE Trans. Inf. Theory 21 (4) (1975) 476-480, doi:10.1109/
TIT.1975.1055402.

[11] S.M. Kay, Modern Spectral Estimation: Theory and Application, Prentice Hall
Englewood Cliffs, 1988.

[12] A. Nehorai, P. Stoica, Adaptive algorithms for constrained ARMA signals in the
presence of noise, IEEE Trans. Acoust. Speech Signal Process. 36 (8) (1988)
1282-1291, doi:10.1109/29.1656.

[13] W.X. Zheng, Autoregressive parameter estimation from noisy data, IEEE Trans.
Circuits Syst. I 47 (1) (2000) 71-75, doi:10.1109/82.818897.

[14] W.X. Zheng, On estimation of autoregressive signals in the presence of noise,
IEEE Trans. Circuits Syst. II 53 (12) (2006) 1471-1475, doi:10.1109/TCSIL.2006.
883094.

[15] A. Mahmoudi, M. Karimi, Inverse filtering based method for estimation of
noisy autoregressive signals, Signal Process. 91 (7) (2011) 1659-1664, doi:10.
1016/j.5igpro.2011.01.008.

[16] C. Davila, A subspace approach to estimation of autoregressive parameters
from noisy measurements, IEEE Trans. Signal Process. 46 (2) (1998) 531-534,
doi:10.1109/78.655442.

[17] R. Diversi, R. Guidorzi, U. Soverini, Identification of autoregressive models in
the presence of additive noise, Int. ]. Adapt. Control Signal Process. 22 (5)
(2008) 465-481, doi:10.1002/acs.989.

[18] Y. Xia, W.X. Zheng, Novel parameter estimation of autoregressive signals in
the presence of noise, Automatica 62 (2015) 98-105, doi:10.1016/j.automatica.
2015.09.008.

[19] D. Labarre, E. Grivel, Y. Berthoumieu, E. Todini, M. Najim, Consistent estimation
of autoregressive parameters from noisy observations based on two interacting
Kalman filters, Signal Process. 86 (10) (2006) 2863-2876, doi:10.1016/j.sigpro.
2005.12.001.

[20] J. Treichler, Transient and convergent behavior of the adaptive line enhancer,
IEEE Trans. Acoust. Speech Signal Process. 27 (1) (1979) 53-62, doi:10.1109/
TASSP.1979.1163200.

[21] W.-R. Wu, P-C. Chen, Adaptive AR modeling in white Gaussian noise, IEEE
Trans. Signal Process. 45 (5) (1997) 1184-1192, doi:10.1109/78.575693.

[22] Y. Zhang, C. Wen, Y.C. Soh, Unbiased LMS filtering in the presence of white
measurement noise with unknown power, IEEE Trans. Circuits Syst. 11 47 (9)
(2000) 968-972, doi:10.1109/82.868469.

[23] M. Gabrea, E. Grivel, M. Najun, A single microphone Kalman filter-based noise
canceller, IEEE Signal Process. Lett. 6 (3) (1999) 55-57, doi:10.1109/97.744623.

13

Signal Processing 186 (2021) 108118

[24] R. Mehra, On the identification of variances and adaptive Kalman filtering, IEEE
Trans. Autom. Control 15 (2) (1970) 175-184, doi:10.1109/TAC.1970.1099422.

[25] M. Esfandiari, S.A. Vorobyov, M. Karimi, New estimation methods for autore-
gressive process in the presence of white observation noise, Signal Process. 171
(2020) 107480, doi:10.1016/j.sigpro.2020.107480.

[26] H. Liitkepohl, New Introduction to Multiple Time Series Analysis, Springer
Berlin Heidelberg, Berlin, Heidelberg, 2005, doi:10.1007/978-3-540-27752-1.

[27] A.P. Dempster, N.M. Laird, D.B. Rubin, Maximum likelihood from incomplete
data via the EM algorithm, J. R. Stat. Soc. 39 (1) (1977) 1-22, doi:10.1111/j.
2517-6161.1977.tb01600.x.

[28] M. Deriche, AR parameter estimation from noisy data using the EM algo-
rithm, in: Proceedings of ICASSP '94. IEEE International Conference on Acous-
tics, Speech and Signal Processing, iv, IEEE, 1994, pp. IV/69-1V/72, doi:10.1109/
ICASSP.1994.389874.

[29] S. Gannot, D. Burshtein, E. Weinstein, Iterative and sequential Kalman filter-
based speech enhancement algorithms, IEEE Trans. Speech Audio Process. 6
(4) (1998) 373-385, doi:10.1109/89.701367.

[30] C.EJ. Wu, On the convergence properties of the EM algorithm, Ann. Stat. 11 (1)
(1983) 95-103.

[31] A. El-Jaroudji, . Makhoul, Discrete all-pole modeling, IEEE Trans. Signal Process.
39 (2) (1991) 411-423, doi:10.1109/78.80824.

[32] L. Weruaga, Frequency-selective noise-compensated autoregressive estimation,
[EEE Trans. Circuits Syst. I 58 (10) (2011) 2469-2476, doi:10.1109/TCSL.2011.
2142830.

[33] A.M. Sykulski, S.C. Olhede, A.P. Guillaumin, .M. Lilly, JJ. Early, The debiased
Whittle likelihood, Biometrika 106 (2) (2019) 251-266, doi:10.1093/biomet/
asy071.

[34] P. Whittle, Estimation and information in stationary time series, Arkiv Mat. 2
(5) (1953) 423-434, doi:10.1007/BF02590998.

[35] PM.T. Broersen, Automatic Autocorrelation and Spectral Analysis, Springer-
Verlag, London, 2006, doi:10.1007/1-84628-329-9.

[36] S. Haykin, B.W. Currie, S.B. Kesler, Maximum-entropy spectral analysis of radar
clutter, Proc. IEEE 70 (9) (1982) 953-962, doi:10.1109/PROC.1982.12426.

[37] S. de Waele, PM.T. Broersen, The Burg algorithm for segments, IEEE Trans. Sig-
nal Process. 48 (10) (2000) 2876-2880, doi:10.1109/78.869039.

[38] S. de Waele, PM.T. Broersen, Spectral analysis of segmented data, in: Pro-
ceedings of the 39th IEEE Conference on Decision and Control (Cat. No.
00CH37187), 1, 2000, pp. 189-190, doi:10.1109/CDC.2000.912756.

[39] M.A. Richards, Fundamentals of Radar Signal Processing, McGraw-Hill, New
York, 2005.

[40] P. Stoica, R. Moses, Spectral Analysis of Signals, Prentice Hall, 2005.

[41] O. Cappe, E. Moulines, T. Ryden, Inference in Hidden Markov Models, Springer,
2005.

[42] S.M. Kay, Recursive maximum likelihood estimation of autoregressive pro-
cesses, IEEE Trans. Acoust. Speech Signal Process. 31 (1) (1983) 56-65, doi:10.
1109/TASSP.1983.1164050.

[43] O. Cayir, C. Candan, Maximum likelihood estimator for noisy autoregressive
model parameter estimation problem with multiple snapshots, 2020, MATLAB
code files. doi:10.24433/C0.7257794.v1.

[44] R.M. Gray, Toeplitz and Circulant Matrices: A Review, Now Publishers, 2006.

[45] A.B. Tsybakov, Introduction to Nonparametric Estimation, Springer, 2008.

[46] D.L. Donoho, X. Huo, Large-sample modulation classification using Hellinger
representation, in: First IEEE Signal Processing Workshop on Signal Processing
Advances in Wireless Communications, 1997, pp. 133-136, doi:10.1109/SPAWC.
1997.630175.

[47] S.M. Kay, Fundamentals of Statistical Processing, Volume I: Estimation Theory,
Prentice Hall, 1993.


https://doi.org/10.1016/j.dsp.2013.06.011
https://doi.org/10.1016/j.bspc.2014.07.011
https://doi.org/10.1016/j.sigpro.2019.107256
http://www.sciencedirect.com/science/article/pii/S0165168419303081
https://doi.org/10.1109/TASSP.1980.1163406
https://doi.org/10.1109/TCSI.2012.2185277
https://doi.org/10.1109/TASL.2013.2255277
https://doi.org/10.1109/TIT.1975.1055402
http://refhub.elsevier.com/S0165-1684(21)00156-0/sbref0011
http://refhub.elsevier.com/S0165-1684(21)00156-0/sbref0011
https://doi.org/10.1109/29.1656
https://doi.org/10.1109/82.818897
https://doi.org/10.1109/TCSII.2006.883094
https://doi.org/10.1016/j.sigpro.2011.01.008
https://doi.org/10.1109/78.655442
https://doi.org/10.1002/acs.989
https://doi.org/10.1016/j.automatica.2015.09.008
https://doi.org/10.1016/j.sigpro.2005.12.001
https://doi.org/10.1109/TASSP.1979.1163200
https://doi.org/10.1109/78.575693
https://doi.org/10.1109/82.868469
https://doi.org/10.1109/97.744623
https://doi.org/10.1109/TAC.1970.1099422
https://doi.org/10.1016/j.sigpro.2020.107480
https://doi.org/10.1007/978-3-540-27752-1
https://doi.org/10.1111/j.2517-6161.1977.tb01600.x
https://doi.org/10.1109/ICASSP.1994.389874
https://doi.org/10.1109/89.701367
http://refhub.elsevier.com/S0165-1684(21)00156-0/sbref0030
http://refhub.elsevier.com/S0165-1684(21)00156-0/sbref0030
https://doi.org/10.1109/78.80824
https://doi.org/10.1109/TCSI.2011.2142830
https://doi.org/10.1093/biomet/asy071
https://doi.org/10.1007/BF02590998
https://doi.org/10.1007/1-84628-329-9
https://doi.org/10.1109/PROC.1982.12426
https://doi.org/10.1109/78.869039
https://doi.org/10.1109/CDC.2000.912756
http://refhub.elsevier.com/S0165-1684(21)00156-0/sbref0039
http://refhub.elsevier.com/S0165-1684(21)00156-0/sbref0039
http://refhub.elsevier.com/S0165-1684(21)00156-0/sbref0040
http://refhub.elsevier.com/S0165-1684(21)00156-0/sbref0040
http://refhub.elsevier.com/S0165-1684(21)00156-0/sbref0040
http://refhub.elsevier.com/S0165-1684(21)00156-0/sbref0041
http://refhub.elsevier.com/S0165-1684(21)00156-0/sbref0041
http://refhub.elsevier.com/S0165-1684(21)00156-0/sbref0041
http://refhub.elsevier.com/S0165-1684(21)00156-0/sbref0041
https://doi.org/10.1109/TASSP.1983.1164050
http://dx.doi.org/10.24433/CO.7257794.v1
http://refhub.elsevier.com/S0165-1684(21)00156-0/sbref0044
http://refhub.elsevier.com/S0165-1684(21)00156-0/sbref0044
http://refhub.elsevier.com/S0165-1684(21)00156-0/sbref0045
http://refhub.elsevier.com/S0165-1684(21)00156-0/sbref0045
https://doi.org/10.1109/SPAWC.1997.630175
http://refhub.elsevier.com/S0165-1684(21)00156-0/sbref0047
http://refhub.elsevier.com/S0165-1684(21)00156-0/sbref0047

	Maximum likelihood autoregressive model parameter estimation with noise corrupted independent snapshots
	1 Introduction
	2 Noisy AR parameter estimation problem
	2.1 EM formulation for noisy AR parameter estimation with multiple snapshots
	2.2 AR parameter estimation problem with multiple noise-free snapshots
	2.2.1 First stage: weighted forward-backward prediction with  snapshots
	2.2.2 Second stage: maximizing likelihood around 

	2.3 An efficient implementation for the suggested solution
	2.3.1 Efficient calculation of the mean vector
	2.3.2 Approximating error covariance matrix
	2.3.3 Efficient calculation of 
	2.3.4 Efficient calculation of optimal perturbation around 

	2.4 Computational complexity considerations

	3 Numerical results
	4 Conclusion
	Declaration of Competing Interest
	Appendix A Initialization of suggested algorithm
	Supplementary material
	CRediT authorship contribution statement
	References


